Common Factors: Let us first define a factor before we can understand the concept of common factors. When a number is multiplied by another number...
Common Factors: Definition, Properties and Examples
December 27, 2024Some properties of definite integrals: We use integrals to calculate areas of irregular shapes in a two-dimensional space. We use definite integrals in industries in real life, and calculus is used in engineering. Engineers use integrals to determine the shape and height of a building that needs to be constructed or the length of power cable required to connect the two substations.
In Mathematics, we start with a function defined on an interval and find its derivative. But there are several situations, practical and theoretical, where it is necessary to reverse this process, i.e. the derivative of a function is known, and we are required to know the function. Here, we use integrals to find the function.
Now let us learn everything about integrals and their types here:
The formula that gives the antiderivatives is called the indefinite integral of the function, and the process of evaluating the integral is called integration.
If \(F\left( x \right)\) is the primitive of \(f\left( x \right)\), then \(F\left( x \right) + c\) is also a primitive of \(f\left( x \right)\), where \(c\) is a constant.
i.e., \(\int {f\left( x \right)} \,dx = F\left( x \right) + c\)
Unlike the indefinite integral, the definite integral has a unique value. It is formulated as
\(\int\limits_a^b {f\left( x \right)\,dx = } F\left( b \right) – F\left( a \right)\)
Where,
1. \(F\) is primitive of \(f\)
2. \(a\) is a lower limit of \(f\left( x \right)\), and \(b\) is an upper limit of \(f\left( x \right)\),
3. \(F\left( a \right)\) and \(F\left( b \right)\) are the values of primitive at the lower limit and upper limit respectively.
If a continuous function \(f\left( x \right)\) is defined on the closed interval \(\left[ {a,\,b} \right]\) and \(F\left( x \right)\) is an indefinite integral of \(f\left( x \right)\) and \(x=a\) and \(x=b\) be the two given values of \(x\), then \(\left[ {F\left( b \right) – F\left( a \right)} \right]\) is called the definite integral of \(f\left( x \right)\) between the limits \(a\) and \(b\).
Notation: It is denoted by \(\int\limits_a^b {f\left( x \right)\,dx} \) and read as integral of \(f\left( x \right)\) from \(a\) to \(b\).
Here \(‘a’\) is called the lower limit and \(‘b’\) the upper limit of integration.
Therefore, \(\int\limits_a^b {f\left( x \right)\,dx} = \left[ {F\left( x \right)} \right]_a^b = F\left( b \right) – F\left( a \right)\) where \(\int {f\left( x \right)} \,dx = F\left( x \right)\)
Note:
PRACTICE EXAM QUESTIONS ON EMBIBE
As the value of a definite integral \(\int\limits_a^b {f\left( x \right)\,dx} \) is independent of the variable of integration \(x,x\) can be treated as a dummy variable (or symbol) i.e., it can be replaced by any other variable (or symbol) having the same range.
Properties
Example:
Show that \(\int\limits_0^a {\frac{{dx}}{{{x^2} + {a^2}}}} = \,\int\limits_0^a {\frac{{dt}}{{{t^2} + {a^2}}}} \)
Sol: \(\int\limits_0^a {\frac{{dx}}{{{x^2} + {a^2}}}} = \left[ {\left( {\frac{1}{a}} \right)\,{{\tan }^{ – 1}}\left( {\frac{x}{a}} \right)} \right]_0^a\)
\( = \left( {\frac{1}{a}} \right)\left[ {{{\tan }^{ – 1}}\left( 1 \right) – {{\tan }^{ – 1}}\left( 0 \right)} \right] = \frac{\pi }{{4a}}\)
Also \(\int\limits_0^a {\frac{{dt}}{{{t^2} + {a^2}}}} = \left[ {\left( {\frac{1}{a}} \right)\,{{\tan }^{ – 1}}\left( {\frac{t}{a}} \right)} \right]_0^a\)
\( = \left( {\frac{1}{a}} \right)\left[ {{{\tan }^{ – 1}}\left( 1 \right) – {{\tan }^{ – 1}}\left( 0 \right)} \right] = \frac{\pi }{{4a}}\)
Hence, \(\int\limits_0^a {\frac{{dx}}{{{x^2} + {a^2}}}} = \,\int\limits_0^a {\frac{{dt}}{{{t^2} + {a^2}}}} \, = \,\frac{\pi }{{4a}}\,\,\)
2. \(\int\limits_a^a {f\left( x \right)\,dx} = 0\)
Proof: \(\int\limits_a^a {f\left( x \right)\,dx} = F\left( a \right) – F\left( a \right)\)
\(\therefore \,\int\limits_a^a {f\left( x \right)\,dx} = 0\,\)
3. \(\int\limits_a^b {f\left( x \right)\,dx} = \,\, – \int\limits_b^a {f\left( x \right)\,dx} \)
Proof: \(\int\limits_a^b {f\left( x \right)\,dx} = F\left( b \right) – F\left( a \right)\)
\( = – \left( {F\left( a \right) – F\left( b \right)} \right)\)
\(\therefore \,\,\int\limits_a^b {f\left( x \right)\,dx} = \, – \int\limits_b^a {f\left( x \right)\,dx} \)
Hence, the sign of definite integral changes when the order of limits is changed.
4. Evaluation of definite integral when \(f\left( x \right)\) is discontinuous or \(f\left( x \right)\) involves modulus and greatest integer function.
\(\,\int\limits_a^b {f\left( x \right)\,dx} = \,\int\limits_a^c {f\left( x \right)\,dx} \, + \,\,\int\limits_c^b {f\left( x \right)\,dx} \)
where, \(c\) may lie inside or outside the interval \(\left[ {a,\,b} \right]\)
Note: This property is to be used when \(f\) is piecewise continuous in \(\left[ {a,\,b} \right]\)
Proof:
Let \(F’\left( x \right) = f\left( x \right)\)
\({\text{RHS = }}\int\limits_a^c {f\left( x \right)\,dx} \, + \,\,\int\limits_c^b {f\left( x \right)\,dx} = F\left( c \right) – F\left( a \right) + F\left( b \right) – F\left( c \right)\)
\( = F\left( b \right) – F\left( a \right) = \int\limits_a^b {f\left( x \right)\,dx} = {\text{LHS}}\)
Note:
Example: Evaluate \(\int\limits_0^e {\left| {x\,{\text{ln}}\,x} \right|\,dx} \)
Sol: \({\text{ln}}\,x < 0\) for \(0<x<1\) and \({\text{ln}}\,x > 0\) for \(1<x<e\)
\( \Rightarrow \int_0^e {\left| {x\,{\text{ln}}\,x} \right|\,dx\, = \,\int_0^{1\,} {\left| {x\,{\text{ln}}\,x} \right|} } \,dx + \int_1^{e\,} {\left| {x\,{\text{ln}}\,x} \right|} \,dx\)
\( = – \left[ {\frac{{{x^2}}}{2}{\text{ln}}\,x – \frac{{{x^2}}}{4}} \right]_0^1\, + \left[ {\frac{{{x^2}}}{2}{\text{ln}}\,x – \frac{{{x^2}}}{4}} \right]_1^e\)
\( = \frac{1}{4} + \frac{{{e^2}}}{2} – \frac{{{e^2}}}{4} + \frac{1}{4}\)
\(\therefore \int_0^e {\left| {x\,{\text{ln}}\,x} \right|\,dx\, = \,} \frac{1}{2} + \frac{{{e^2}}}{4}\)
5. a. \(I = \int_0^a {f\left( x \right)dx = } \int_0^a {f\left( {a – x} \right)dx} \)
b. \(I = \int_0^a {f\left( x \right)dx = } \,\left( {\frac{1}{2}} \right)\int_0^a {\left( {f\left( x \right) + f\left( {a – x} \right)} \right)dx}\)
Proof: Let \(x = a – t \Rightarrow dx = – dt\)
\(\int_0^a {f\left( x \right)dx = } \,\int_a^0 {f\left( {a – t} \right)\left( { – dt} \right)} = \int_0^a {f\left( {a – t} \right)\,dt} \)
Now \(I = \int_0^a {f\left( x \right)dx\,\,\,} \) and \(I = \int_0^a {f\left( a-x \right)dx\,\,\,} \) on adding, we get
\(\therefore \,I = \left( {\frac{1}{2}} \right)\int_0^a {\left( {f\left( x \right) + f\left( {a – x} \right)} \right)dx\,\,\,} \)
6. a. \(I = \int_a^b {f\left( x \right)dx\, = } \int_a^b {f\left( {a + b – x} \right)dx\,} \)
b. \(I = \int_a^b {f\left( x \right)dx\, = \left( {\frac{1}{2}} \right)} \int_a^b {\left( {f\left( x \right) + f\left( {a + b – x} \right)} \right)dx\,}\)
Proof: Consider \(I = \int_a^b {f\left( {a + b – x} \right)dx\,} \)
Put \(a+b-x\) then \(dx=-dt\)
\(x = a \Rightarrow t = b\), and \(x = b \Rightarrow t = a\)
\( \Rightarrow \int_a^b {f\left( {a + b – x} \right)dx\, = \,\int_b^a {f\left( t \right)\,\left( { – dt} \right)} \,} \)
\( = \, – \int_b^a {f\left( t \right)\,dt} \)
\( = \, \int_a^b {f\left( t \right)\,dt} \)
\(\therefore \,\int_a^b {f\left( {a + b – x} \right)dx\, = \,\int_a^b {f\left( x \right)\,dx} \,} \)
7. \(\int_{ – a}^a {f\left( x \right)dx = } \int_0^a {\left[ {f\left( x \right) + f\left( { – x} \right)} \right]dx} = \left\{ \begin{gathered} 0\,,\,{\text{if}}\,f\left( { x} \right)\, {\text{is}}\,{\text{odd}}\, \hfill \\ 2\int_0^a {f\left( x \right)\,dx,\,\,{\text{if}}\,f\left( { x} \right)\, {\text{is}}\,{\text{even}}} \hfill \\\end{gathered} \right.\)
Proof: \(I = \int_{ – a}^a {f\left( x \right)dx = \int_{ – a}^0 {f\left( x \right)dx + \int_0^a {f\left( x \right)\,dx} } } \)
Replacing \(x\) by \(-x\) in the \({1^{{\text{st}}}}\) integral, we get
\(I = \int_{ – a}^0 {f\left( { – x} \right)\,d( – x)} + \int_0^a {f\left( x \right)} \,dx\)
\(I = \int_{ 0}^a {f\left( { – x} \right)\,dx} + \int_0^a {f\left( x \right)} \,dx\)
\( = \left\{ \begin{gathered} 0\,,\,\,\,\,{\text{if}}\,f\left( {- x} \right)\, = – f(x)\, \hfill \\ 2\int_0^a {f\left( x \right)\,dx,\,\,\,\,\,{\text{if}}\,f\left( { – x} \right)\, = f(x)} \hfill \\\end{gathered} \right.\)
\(\therefore I = \left\{ \begin{gathered} 0\,,\,{\text{if}}\,f\left( { x} \right)\, {\text{is}}\,{\text{odd}}\, \hfill \\ 2\int_0^a {f\left( x \right)\,dx,\,\,{\text{if}}\,f\left( { x} \right)\, {\text{is}}\,{\text{even}}} \hfill \\\end{gathered} \right.\)
8. \(\int_0^{2a} {f\left( x \right)\,dx = \int_0^a {\left[ {f\left( x \right) + f\left( {2a – x} \right)} \right]dx = } } \left\{ \begin{gathered} 0\,,\,\,\,\,{\text{if}}\,f\left( {2a – x} \right)\, = – f(x)\, \hfill \\ 2\int_0^a {f\left( x \right)\,dx,\,\,\,\,\,{\text{if}}\,f\left( {2a – x} \right)\, = f(x)} \hfill \\\end{gathered} \right.\)
Proof: \(I = \int_0^{2a} {f\left( x \right)dx = } \int_0^a {f\left( x \right)\,dx + \int_a^{2a} {f\left( x \right)dx} } \)
\( = \int_0^a {f\left( x \right)dx + \int_0^a {f\left( {2a – x} \right)dx} } \)
\( = \int_0^a {\left( {f\left( x \right)dx + f\left( {2a – x} \right)} \right)} dx\)
\(\therefore I = \left\{ \begin{gathered} 0\,,\,\,\,\,{\text{if}}\,f\left( {2a – x} \right)\, = – f\left( x \right)\, \hfill \\ 2\int_0^a {f\left( x \right)\,dx,\,\,\,\,\,{\text{if}}\,f\left( {2a – x} \right)\, = f\left( x \right)} \hfill \\\end{gathered} \right.\)
9. If \(f\left( x \right)\) is discontinuous at \(x=a\) then \(\int_0^{2a} {f\left( x \right)dx = \int_0^a {\left\{ {f\left( {a – x} \right) + f\left( {a + x} \right)} \right\}} } dx\)
Proof: \(\int_0^{2a} {f\left( x \right)dx = \int_0^a {f\left( x \right)} } dx + \int_a^{2a} {f\left( x \right)\,dx} \)
\( = \int_0^a {f\left( {a – x} \right)\,dx + \int_0^a {f\left( {a + x} \right)dx} } \)
\(\therefore \,\int_0^{2a} {f\left( x \right)dx = \int_0^a {\left[ {f\left( {a – x} \right) + f\left( {a + x} \right)} \right]\,dx} } \)
10.\(\int_a^b {f\left( x \right)\,dx = \left\{ \begin{gathered} \int_{a \pm c}^{b \pm c} {f\left( {x \mp c} \right)} \,dx \hfill \\ k\int_{\frac{a}{k}}^{\frac{b}{k}} {f\left( {kx} \right)\,dx} \hfill \\ \left( {\frac{1}{k}} \right)\int_{ak}^{bk} {f\left( {\frac{x}{k}} \right)\,dx,\,k \ne 0} \hfill \\\end{gathered} \right.} \)
11. Change of limits of the integral to the limits \(0\) and \(1\).
\(\int_a^b {f\left( x \right)dx} = \left( {b – a} \right)\int_0^1 {f\left( {a + \left( {b – a} \right)x} \right)dx} \)
Proof:
Substitute \(t = \frac{{x – a}}{{b – a}} \Rightarrow x = a + \left( {b – a} \right)t\)
\(dx = \left( {b – a} \right)\,dt\)
\(\therefore \,\int_a^b {f\left( x \right)dx = \,\int_0^1 {\left( {b – a} \right)f\left( {a + \left( {b – a} \right)t} \right)\,dt} } \)
This formula is useful when we want to change the limits of integration from \(0\) to \(1\).
A function \(f\left( x \right)\) is periodic, if there exists a real positive and finite constant \(T\) independent of \(x\) such that \(f\left( {x + T} \right) = f\left( x \right),\forall x \in {D_f}\) provided, \(\left( {x + T} \right) \in {D_f}\left( {{\text{domain}}\,{\text{of}}\,f} \right)\). Since \(…. = f\left( {x – 2T} \right) = f\left( {x – T} \right) = f\left( x \right) = f\left( {x + T} \right) = f\left( {x + 2T} \right)…..\)
Therefore, we conclude \(f\left( x \right) = f\left( {x + nT} \right)\forall n \in Z\), for which \(x + nT \in {D_f}\).
The least positive value of such \(T\) (if exists), is called the period/principal period or fundamental period of \(f\left( x \right)\).
e.g., \(f\left( x \right) = \sin \,x,\,f\left( x \right) = \tan \,x\) are periodic functions with periods \(2\pi \) and \(\pi \), respectively.
Note:
Non-Periodic Functions: The functions which are not periodic are called non-periodic functions.
Let \(f\left( x \right)\) be a periodic function with the period \(T\). Then \(f\left( {x + nT} \right) = f\left( x \right),n \in N\).
1. \(\int_0^{nT} {f\left( x \right)\,dx = n\int_0^T {f\left( x \right)\,dx} } \)
Proof:
\(\int_0^{nT} {f\left( x \right)\,dx = \int_0^T {f\left( x \right)\,dx} } + \int_T^{2T} {f\left( x \right)\,dx} + …. + \int_{\left( {n – 1} \right)T}^{nT} {f\left( x \right)\,dx} \)
\( = \int_0^T {f\left( x \right)\,dx + \int_0^T {f\left( {x + T} \right)\,dx} } + …. + \int_0^T {f\left( {x+\left( {n – 1} \right)T} \right)\,dx} \)
\(\therefore \,\int_0^{nT} {f\left( x \right)\,dx = n\int_0^T {f\left( x \right)\,dx} } \)
2. \(\int_{mT}^{nT} {f\left( x \right)\,dx = \left( {n – m} \right)\,\int_0^T {f\left( x \right)\,dx\,} } \) where \(m,\,n \in Z\)
Proof:
\(\int_{mT}^{nT} {f\left( x \right)\,dx = \,\int_{mT – mT}^{nT – mT} {f\left( {x + mT} \right)\,dx\,} } \)
\( = \int_0^{\left( {n – m} \right)T} {f\left( x \right)\,dx} \)
\(\therefore \,\int_{mT}^{nT} {f\left( x \right)\,} dx = \left( {n – m} \right)\,\int_0^T {f\left( x \right)\,dx\,} \)
3. \(\int_{a + nT}^{b + nT} {f\left( x \right)\,} dx = \int_a^b {f\left( x \right)\,} dx\,\left( {n \in N} \right)\)
Proof:
Apply translation properties, we get
\(\int_{a + nT}^{b + nT} {f\left( x \right)\,} dx = \int_{a + nT – nT}^{b + nT – nT} {f\left( {x + nT} \right)\,} dx\)
\( = \int_a^b {f\left( {x + nT} \right)\,} dx\)
\(\therefore \,\int_{a + nT}^{b + nT} {f\left( x \right)\,} dx = \int_a^b {f\left( x \right)\,} dx\)
4. \(\int_a^{a + T} {f\left( x \right)\,} dx = \int_0^T {f\left( x \right)\,} dx\), which is independent of \(‘a’\).
Proof:
\(\int_a^{a + T} {f\left( x \right)\,} dx = \int_a^T {f\left( x \right)\,} dx + \int_T^{a + T} {f\left( x \right)\,} dx\)
\( = \,\int_a^T {f\left( x \right)\,} dx + \int_{T – T}^{a + T – T} {f\left( {x + T} \right)\,} dx = \int_a^T {f\left( x \right)\,} dx + \int_0^a {f\left( x \right)\,dx} \)
\(\therefore \,\int_a^{a + T} {f\left( x \right)\,} dx = \,\int_0^T {f\left( x \right)\,dx\,} \)
This is independent of \(‘a’\).
5. \(\int_a^{a + nT} {f\left( x \right)\,} dx = \,n\int_0^T {f\left( x \right)\,dx\,} ,\,n \in N\)
Proof:
\(\int_a^{a + nT} {f\left( x \right)\,} dx = \,\int_a^0 {f\left( x \right)\,dx\,} + \int_0^{nT} {f\left( x \right)\,dx\,} + \int_{nT}^{a + nT} {f\left( x \right)\,} dx\)
\( = \int_a^0 {f\left( x \right)\,} dx + n\int_0^T {f\left( x \right)\,} dx + \int_0^a {f\left( x \right)\,} dx\)
\(\therefore \int_a^{a + nT} {f\left( x \right)\,} dx = n\int_0^T {f\left( x \right)\,} dx\)
Theorem: Let \(f\left( x \right)\) be a periodic function with the period \(T\). Then \(\frac{{\int_0^{nT} {{e^x}} f\left( x \right)\,dx}}{{\int_0^T {{e^x}} f\left( x \right)\,dx}} = \frac{{1 – {e^{nT}}}}{{1 – {e^T}}}\)
Proof:
Let \(I = \int_0^{nT} {{e^x}} f\left( x \right)\,dx\)
Then \(I = \int_0^{T} {{e^x}} f\left( x \right)\,dx + \int_T^{2T} {{e^x}} f\left( x \right)\,dx + …. + \int_{\left( {n – 1} \right)T}^{nT} {{e^x}} f\left( x \right)\,dx\)
\( = \int_0^T {{e^x}} f\left( x \right)\,dx + \int_0^T {{e^{x + T}}} f\left( {x + T} \right)\,dx + …. + \int_0^T {{e^{x + \left( {n – 1} \right)T}}} f\left( {x + \left( {n – 1} \right)T} \right)\,dx\)
\( = \int_0^T {{e^x}} f\left( x \right)\,dx + {e^T}\int_0^T {{e^x}} f\left( x \right)\,dx + {e^{2T}}\int_0^T {{e^x}} f\left( x \right)\,dx + …. + {e^{\left( {n – 1} \right)T}}\int_0^T {{e^x}} f\left( x \right)\,dx\)
\( = \left[ {1 + {e^T} + {e^{2T}} + …. + {e^{\left( {n – 1} \right)T}}} \right]\int_0^T {{e^x}} f\left( x \right)\,dx\)
\( = \left[ {\frac{{1 – {e^{nT}}}}{{1 – {e^T}}}} \right]\int_0^T {{e^x}} f\left( x \right)\,dx\)
\(\therefore \frac{{\int_0^{nT} {{e^x}} f\left( x \right)\,dx}}{{\int_0^T {{e^x}} f\left( x \right)\,dx}} = \frac{{1 – {e^{nT}}}}{{1 – {e^T}}}\)
Q.1. Evaluate \(\sum\nolimits_{m = 0}^{2013} {\int_0^1 x {{\left( {1 – x} \right)}^m}\,dx} \)
Sol: \(I = \int_0^1 x {\left( {1 – x} \right)^m}\,dx = \int_0^1 {{{\left( {1 – x} \right)}}} {x^m}\,dx\)
\( = \int_0^1 {\left( {{x^m} – {x^{m + 1}}} \right)} \,dx\)
\( = \frac{1}{{m + 1}} – \frac{1}{{m + 2}}\)
\({\sum\limits_{m = 0}^{2013} {\left( {\frac{1}{{m + 1}} – \frac{1}{{m + 2}}} \right)} }\)
\( = 1 – \frac{1}{{2015}}\)
\( = \frac{{2014}}{{2015}}\)
Q.2. Compute the integral \(\int_{-\sqrt 2 }^{\sqrt 2 } {\frac{{2{x^7} + 3{x^6} – 10{x^5} – 7{x^3} – 12{x^2} + x + 1}}{{{x^2} + 2}}} dx\)
Sol: Break the integrand as the sum of two functions, one being even and the other being odd.
\(I = \int_{ – \sqrt 2 }^{\sqrt 2 } {\frac{{3{x^6} – 12{x^2} + 1}}{{{x^2} + 2}}} dx + \int_{ – \sqrt 2 }^{\sqrt 2 } {\frac{{2{x^7} – 10{x^5} – 7{x^3} + x}}{{{x^2} + 2}}} dx\)
It is obvious that the integral of \({2^{{\text{nd}}}}\) integrand is an odd function and \({1^{{\text{st}}}}\) is an even function.
\(\therefore I = 2\int_0^{\sqrt 2 } {\frac{{3{x^6} – 12{x^2} + 1}}{{{x^2} + 2}}} dx + 0\,\)
\( = 2\int_0^{\sqrt 2 } {\frac{{3{x^2}\left( {{x^4} – 4} \right) + 1}}{{{x^2} + 2}}} dx\)
\( = 2\int_0^{\sqrt 2 } {3{x^2}\left( {{x^2} – 2} \right)} \,dx + \,2\,\int_0^{\sqrt 2 } {\frac{1}{{{x^2} + 2}}} dx\)
\( = \left[ {\left( {\frac{{6{x^5}}}{5} – 4{x^3}} \right)} \right]_0^{\sqrt 2 } + \frac{2}{{\sqrt 2 }}\left[ {{{\tan }^{ – 1}}\frac{x}{{\sqrt 2 }}} \right]_0^{\sqrt 2 }\)
\( = \frac{\pi }{{2\sqrt 2 }} – \frac{{16}}{5}\sqrt 2 \)
Q.3. Evaluate \(\int_0^\pi {\frac{{x\,dx}}{{1 + {{\cos }^2}\,x}}} \)
Sol:
\(I = \int_0^\pi {\frac{{x\,dx}}{{1 + {{\cos }^2}\,x}}} \)
\( = \int_0^\pi {\frac{{\left( {\pi – x} \right)\,dx}}{{1 + {{\cos }^2}\,\left( {\pi – x} \right)}}} \)
\( = \int_0^\pi {\frac{{\left( {\pi – x} \right)\,dx}}{{1 + {{\cos }^2}\,x}}} \)
On adding both, we get
\(2I = \int_0^\pi {\frac{{\pi \,dx}}{{1 + {{\cos }^2}\,x}}} \)
\( \Rightarrow I = \frac{\pi }{2}\int_0^\pi {\frac{{\,dx}}{{1 + {{\cos }^2}\,x}}} \)
\( = \frac{{2\pi }}{2}\mathop \smallint \nolimits_0^{\frac{\pi }{2}} \frac{{dx}}{{1 + {{\cos }^2}x}}\)
\( = \pi \int_0^{\frac{\pi }{2}} {\frac{{{{\sec }^2}\,x\,dx}}{{2 + {{\tan }^2}\,x}}} \)
Put \(\tan \,x = t\)
\(I = \pi \int_0^\infty {\frac{{dt}}{{{t^2} + 2}} = \frac{\pi }{{\sqrt 2 }}} {\tan ^{ – 1}}\left( {\frac{t}{{\sqrt 2 }}} \right)_0^\infty \)
\(\therefore \,I = \frac{{{\pi ^2}}}{{2\sqrt 2 }}\)
Q.4. Let \(I = \int_0^\pi {\frac{{f\left( x \right)\sin \,2x\,\sin \,\left( {\frac{\pi }{2}\,\cos \,x} \right)}}{{2x – \pi }}} dx\). If \(f\left( x \right) = {x^2}\) then \(I=\)
Sol: If \(f\left( x \right) = {x^2}\) then \(f\left( {\frac{\pi }{2} + x} \right) – f\left( {\frac{\pi }{2} – x} \right)\)
\( = {\left( {\frac{\pi }{2} + x} \right)^2} – {\left( {\frac{\pi }{2} – x} \right)^2} = 4 \cdot \frac{\pi }{2} \cdot x\)
\( \Rightarrow I = \int_0^{\frac{\pi }{2}} {\frac{{\sin \,2x\,\sin \,\left( {\frac{\pi }{2}\,\sin \,x} \right)}}{{2x}} \times 2\pi \,x\,dx} \)
\( = \pi \int_0^{\frac{\pi }{2}} {\sin \,2x\,\sin \,\left( {\frac{\pi }{2}\,\sin \,x} \right)\,dx} = \pi \cdot \frac{8}{{{\pi ^2}}}\)
\(\therefore \,I = \frac{8}{\pi }\)
Q.5. If \(\int_0^1 {\frac{{\sin \,x}}{{1 + x}}\,dx = \alpha } \) then what is \(\int_{4\pi – 2}^{4\pi } {\frac{{\sin \frac{x}{2}}}{{4\pi + 2 – x}}dx} \)
Sol: Let \(I = \int_{4\pi – 2}^{4\pi } {\frac{{\sin \,\frac{x}{2}}}{{4\pi + 2 – x}}\,dx} \)
Let \(t = \frac{{x – a}}{{b – a}} = \frac{{x – 4\pi }}{{ – 2}}\)
\( \Rightarrow dt = – \frac{1}{2}dx\) and \(4\pi – x = 2t\)
\(I = \int_0^1 {\frac{{\sin \,\left( {2\pi – t} \right)}}{{2t + 2}}\left( { – 2dt} \right)} \)
\( = \int_0^1 {\frac{{\sin \,t}}{{1 + t}}\,dt} \)
\( = \alpha \)
If \(f\) is defined on an interval \(I\) and \(F\) is a function such that \(F’\left( x \right) = f\left( x \right)\) for all \(x \in I\), then \(F\) is said to be the primitive or antiderivative of \(f\). If \(f\left( x \right)\) is continuous and is defined on the closed interval \(\left[ {a,\,b} \right]\) and \(F\left( x \right)\) is an indefinite integral of \(f\left( x \right)\) and \(x=a\) and \(x=b\) be the two given values of \(x\), then \(\int_a^b {f\left( x \right)dx = \left[ {F\left( x \right)} \right]} _a^b = F\left( b \right) – F\left( a \right)\) where \(\int {f\left( x \right)\,dx = F\left( x \right)} \). If \(f\left( x \right) = f\left( {x + nT} \right)\forall n \in Z\) , for which \(\left( {x + nT} \right)\, \in {D_f}\).Then, \(f\left( x \right)\) is said to be a periodic function. The least positive value of such \(T\), (if exists), is called the principal period or fundamental period of \(f\left( x \right)\).
The frequently asked questions on some properties of definite integrals are given below:
Q.1. What is meant by definite integral?
Ans: If \(f\left( x \right)\) is continuous and is defined on the closed interval \(\left[ {a,\,b} \right]\) and \(F\left( x \right)\) is an indefinite integral of \(f\left( x \right)\) and \(x=a\) and \(x=b\) be the two given values of \(x\), then \(\left[ {F\left( b \right) – F\left( a \right)} \right]\) is called the definite integral of \(f\left( x \right)\) between the limits \(a\) and \(b\).
Therefore, \(\int_a^b {f\left( x \right)\,dx = \left[ {F\left( x \right)} \right]} _a^b = F\left( b \right) – F\left( a \right)\) where \(\int {f\left( x \right)\,dx = F\left( x \right)} \)
Q.2. What are the rules for definite integrals?
Ans: Rules of definite integrals are as follows:
1. \(\int_a^b {f\left( x \right)\,dx = } \int_a^b {f\left( t \right)} \,dt\)
2. \(\int_a^a {f\left( x \right)\,dx = } 0\)
3. \(\int_a^b {f\left( x \right)\,dx = } – \int_b^a {f\left( x \right)\,dx} \)
4. \(\int_a^b {f\left( x \right)\,dx = } \int_a^c {f\left( x \right)\,dx} + \int_c^b {f\left( x \right)\,dx} \) where \(c\) may lie inside or outside the interval \(\left[ {a,\,b} \right]\).
5. a. \(I = \int_0^a {f\left( x \right)dx = } \int_0^a {f\left( {a – x} \right)dx} \)
b. \(I = \int_0^a {f\left( x \right)dx} = \left( {\frac{1}{2}} \right)\int_0^a {\left( {f\left( x \right) + f\left( {a – x} \right)} \right)dx} \)
6. a. \(I = \int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b – x} \right)dx} \)
b. \(I = \int_a^b {f\left( x \right)dx} = \left( {\frac{1}{2}} \right)\int_a^b {\left( {f\left( x \right) + f\left( {a + b – x} \right)} \right)dx} \)
7. \(\int_{ – a}^a {f\left( x \right)dx = } \int_0^a {\left[ {f\left( x \right) + f\left( { – x} \right)} \right]dx} = \left\{ \begin{gathered} 0\,,\,{\text{if}}\,f\left( { x} \right)\, {\text{is}}\,{\text{odd}}\, \hfill \\ 2\int_0^a {f\left( x \right)\,dx,\,\,{\text{if}}\,f\left( { x} \right)\, {\text{is}}\,{\text{even}}} \hfill \\\end{gathered} \right.\)
8. \(\int_0^{2a} {f\left( x \right)\,dx = \int_0^a {\left[ {f\left( x \right) + f\left( {2a – x} \right)} \right]dx = } } \left\{ \begin{gathered} 0\,,\,\,\,\,{\text{if}}\,f\left( {2a – x} \right)\, = – f(x)\, \hfill \\ 2\int_0^a {f\left( x \right)\,dx,\,\,\,\,\,{\text{if}}\,f\left( {2a – x} \right)\, = f(x)} \hfill \\\end{gathered} \right.\)
9. If \(f\left( x \right)\) is discontinuous at \(x=a\) then \(\int_0^{2a} {f\left( x \right)dx = \int_0^a {\left\{ {f\left( {a – x} \right) + f\left( {a + x} \right)} \right\}} } dx\)
10. \(\int_a^b {f\left( x \right)\,dx = \left\{ \begin{gathered} \int_{a \pm c}^{b \pm c} {f\left( {x \mp c} \right)} \,dx \hfill \\ k\int_{\frac{a}{k}}^{\frac{b}{k}} {f\left( {kx} \right)\,dx} \hfill \\ \left( {\frac{1}{k}} \right)\int_{ak}^{bk} {f\left( {\frac{x}{k}} \right)\,dx,\,k \ne 0} \hfill \\\end{gathered} \right.} \)
11. \(\int_a^b {f\left( x \right)dx = \left( {b – a} \right)\,\int_0^1 {f\left( {a + \left( {b – a} \right)x} \right)\,dx} } \)
Q.3. What is the application of definite integrals?
Ans: Definite integrals can be used to determine the mass of an object if its density function is known. Work can also be calculated from integrating a force function, or when counting the force of gravity, as in a pumping problem.
Q.4. How do you integrate upper and lower limits?
Ans: The definite integral has a unique value. It is formulated as
\(\int_a^b {f\left( x \right)dx = } F\left( b \right) – F\left( a \right)\)
Where,
i) \(F\) is primitive of \(f\).
ii) \(a\) is a lower limit of \(f\left( x \right)\), and \(b\) is an upper limit of \(f\left( x \right)\).
iii) \(F\left( a \right)\) and \(F\left( b \right)\) are the values of primitive at the lower limit and upper limit, respectively.
Q.5. What is the value of a definite integral?
Ans: The value of a definite integral of \(f\left( x \right)\) on \(\left[ {a,\,b} \right]\) is the difference between the primitive or antiderivative of \(f\left( x \right)\) evaluated at the upper limit and the lower limit of integration.
We hope this article on Some properties of definite integrals is helpful to you. If you have any queries on this page or in general about some properties of definite integrals, ping us through the comment box below and we will get back to you as soon as possible.