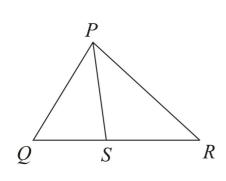


Exercise 6.6

Q.1. In the given figure, PS is the bisector of \angle QPR of \triangle PQR. Prove that QSSR=PQPR.

7



Solution:

Given that, PS is angle bisector of $\angle QPR$.

Q

P

Construct a line RT parallel to SP which meets QP produced at T. \angle QPS= \angle SPR(1) \angle SPR= \angle PRT (As PS||TR, alternate interior angles)(2) \angle QPS= \angle QTR (As PS||TR, corresponding angles)(3) Using these equations, we may find \angle PRT= \angle QTR from (2) and (3) So, PT=PR (Since \triangle PTR is isosceles triangle)

R

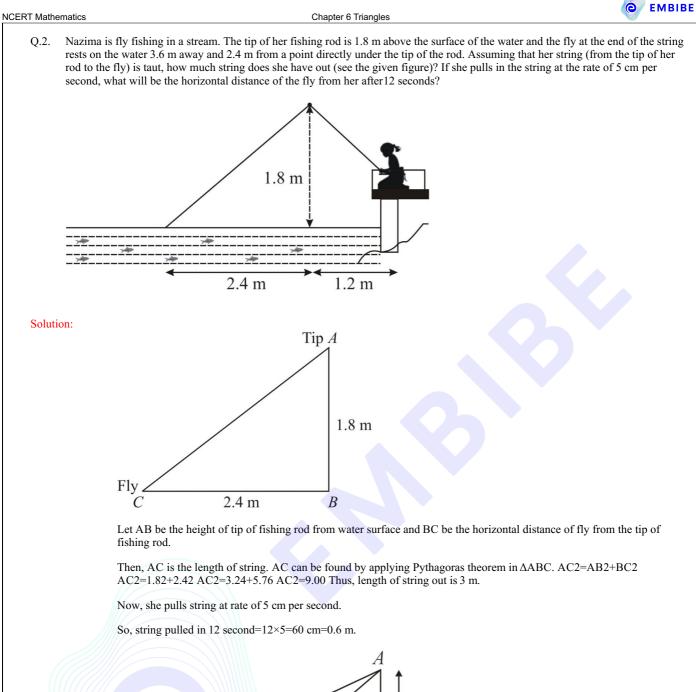
Now in $\triangle QPS$ and $\triangle QTR$, $\angle QSP = \angle QRT$ (As PS ||TR)

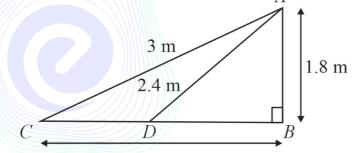
S

 $\angle QPS = \angle QTR$ (As PS || TR)

 $\angle Q$ is common. $\triangle QPS \sim \triangle QTR$ $\Rightarrow QSSR = QPPT \Rightarrow QSSR = PQPR$

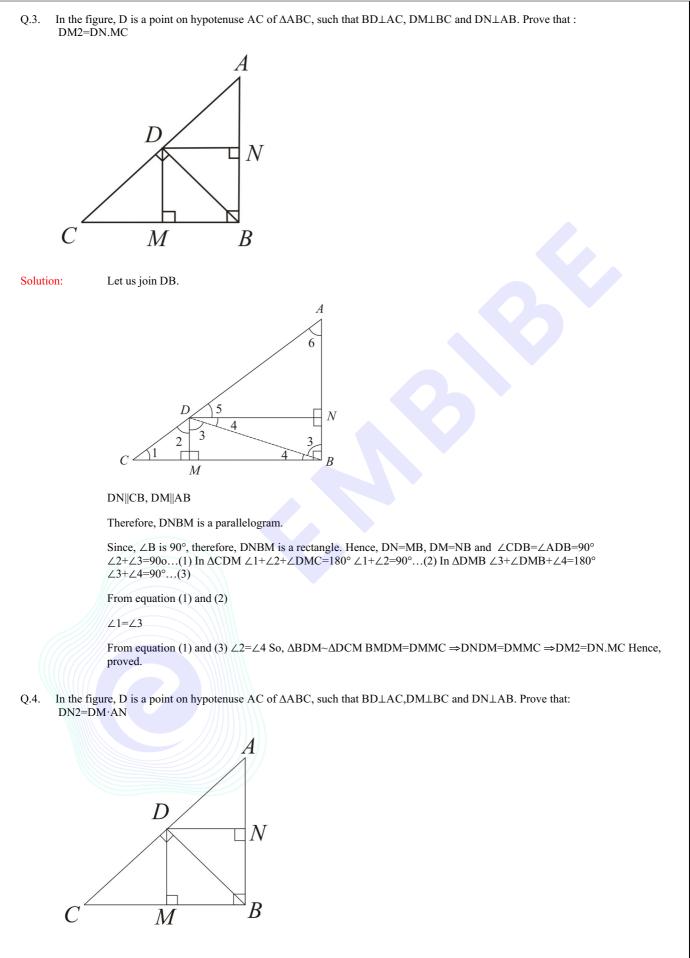
(by AAA property) So, QRQS=QTQP \Rightarrow QRQS-1=QTQP-1 \Rightarrow SRQS=PTQP





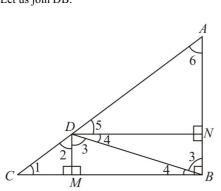
After 12 seconds, let us assume the fly to be at point D.

Length of string out after 12 second is AD. AD=AC- string pulled by Nazima in 12 second =3.00-0.6 =2.4 m In \triangle ADB, AB2+BD2=AD2 \Rightarrow 1.82+BD2=2.42 \Rightarrow BD2=5.76-3.24=2.52 \Rightarrow BD=1.587 m Horizontal distance of fly =BD+1.2 =1.587+1.2 =2.787 =2.79 m



Solution:

Let us join DB.



DN||CB, DM||AB

Therefore, DNBM is a parallelogram.

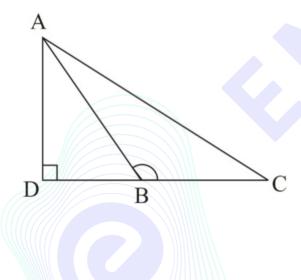
Since, $\angle B$ is 90°. Therefore, DNBM is a rectangle. So, DN=MB, DM=NB and $\angle CDB=\angle ADB=90^{\circ} \angle 4+\angle 5=900...(1)$ In $\triangle ADN \angle 5+\angle 6=90^{\circ}...(2)$

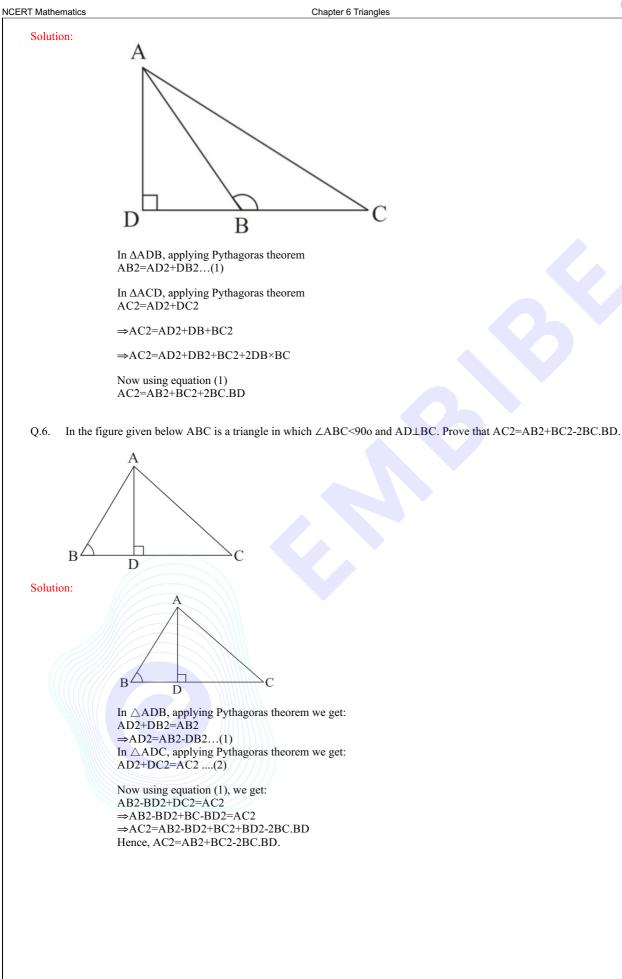
From equation (1) and (2)

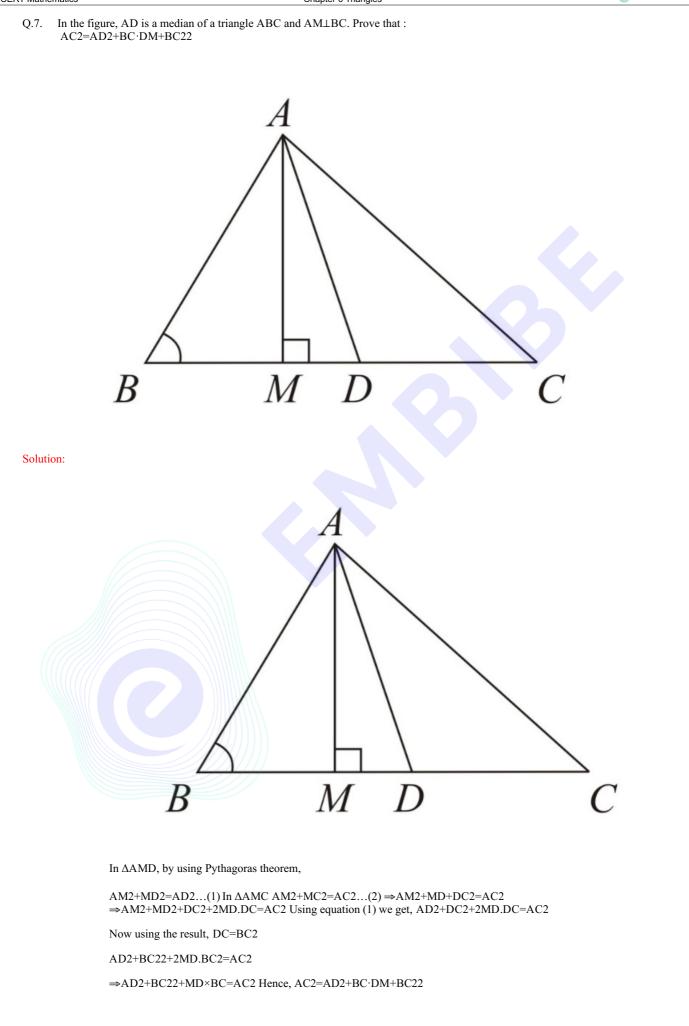
∠4=∠6

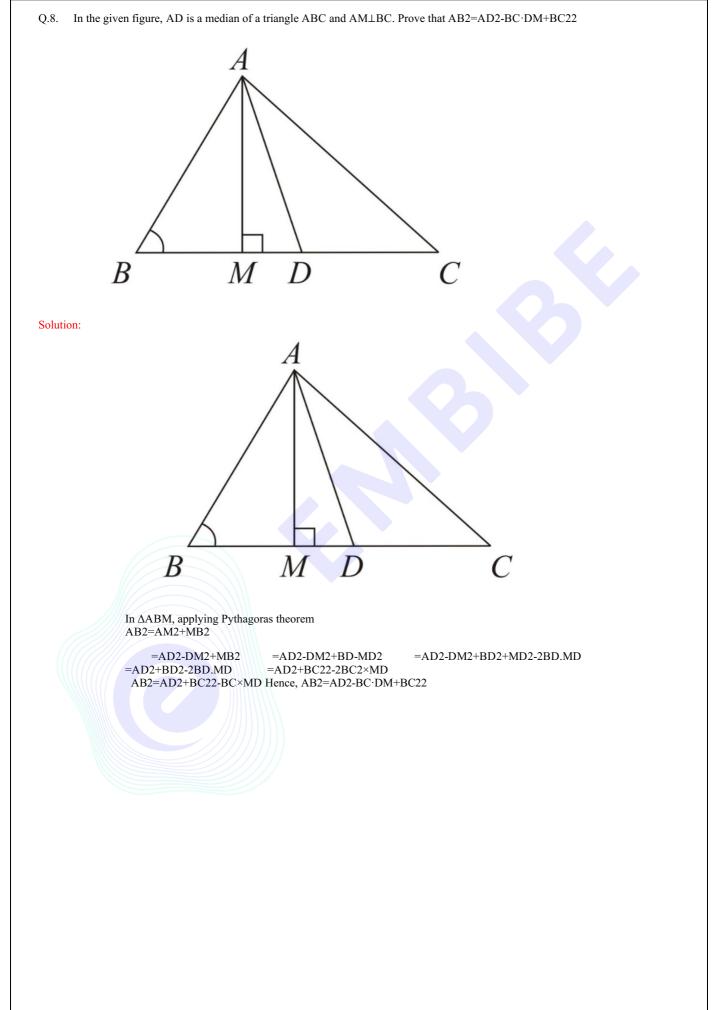
and $\angle DNA = \angle DNB = 90^{\circ}$ So, $\triangle ADN \sim \triangle BDN DNBN = ANDN \Rightarrow DNDM = ANDN (As BN=DM) \Rightarrow DN2 = DM \times AN$ Hence, proved.

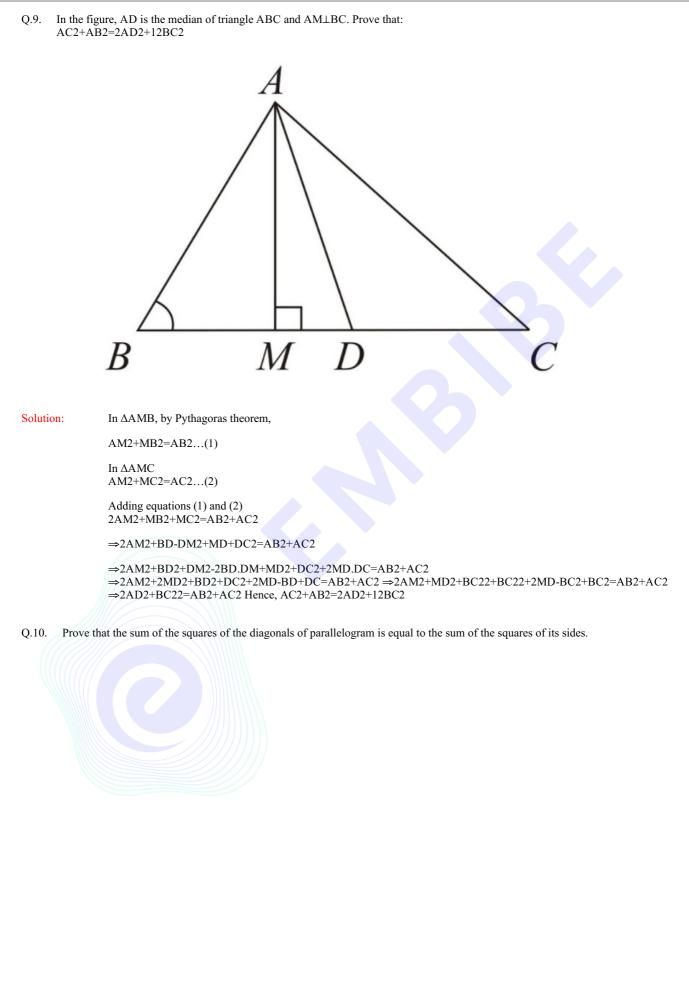
Q.5. ABC is a triangle in which ∠ABC>900 and AD⊥CB produced. Prove that AC2=AB2+BC2+2BC·BD.

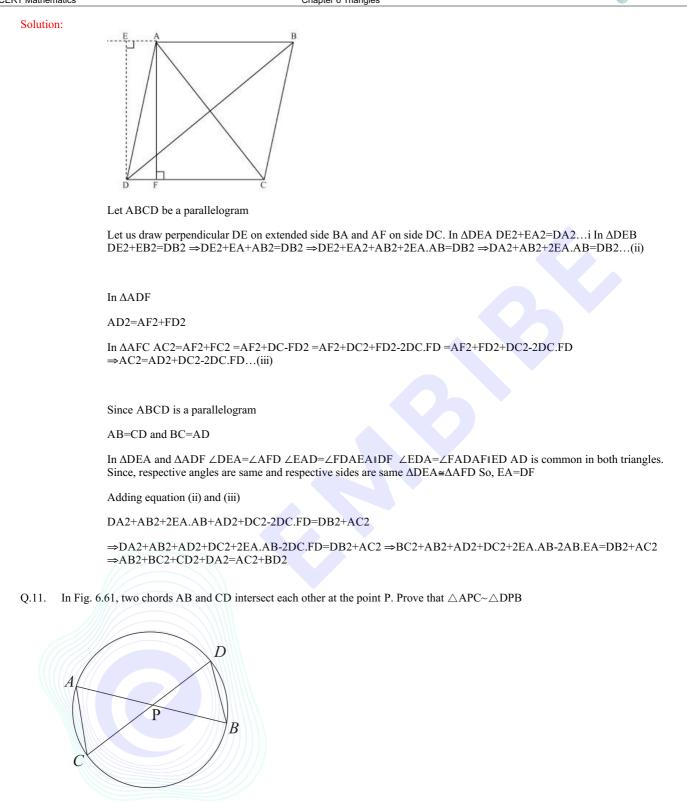


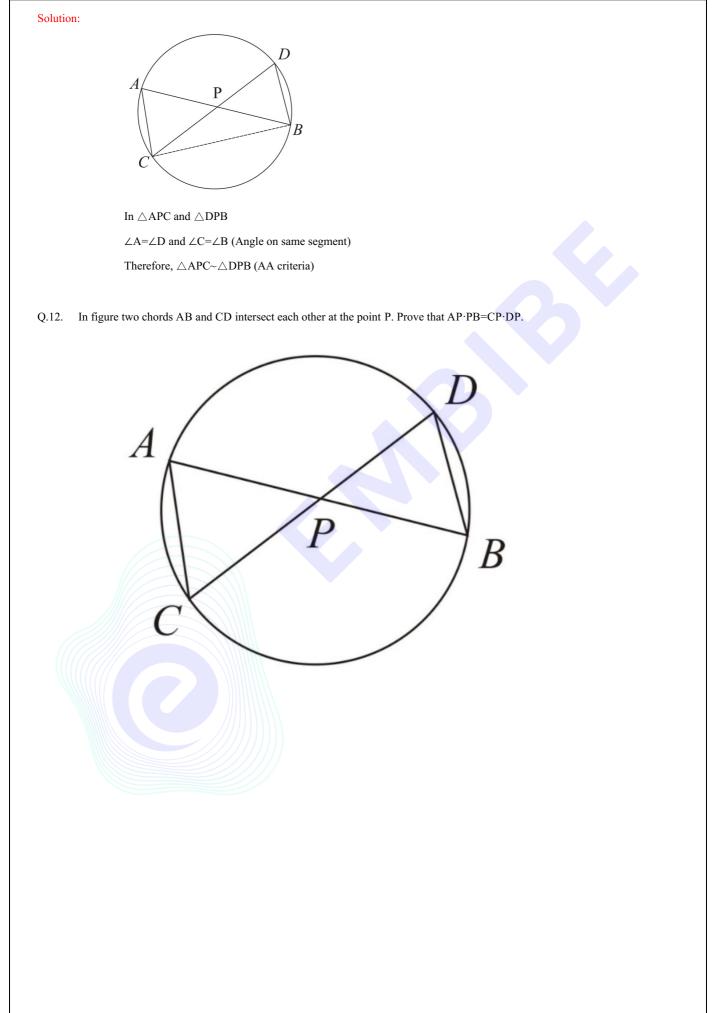


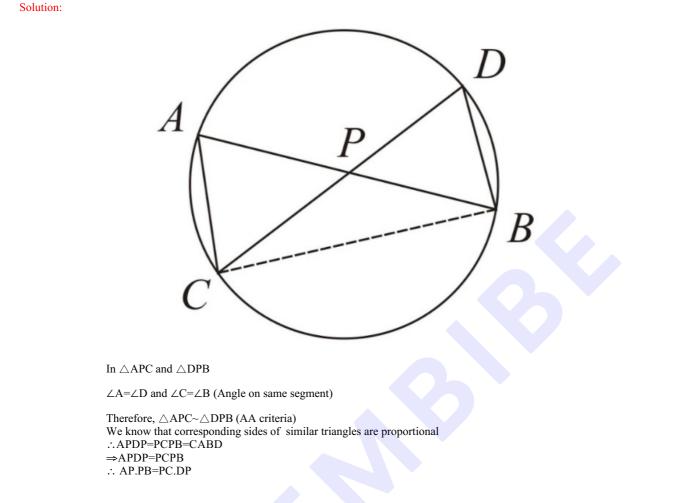




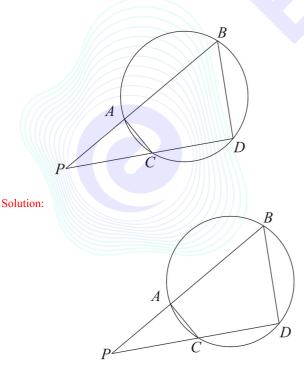






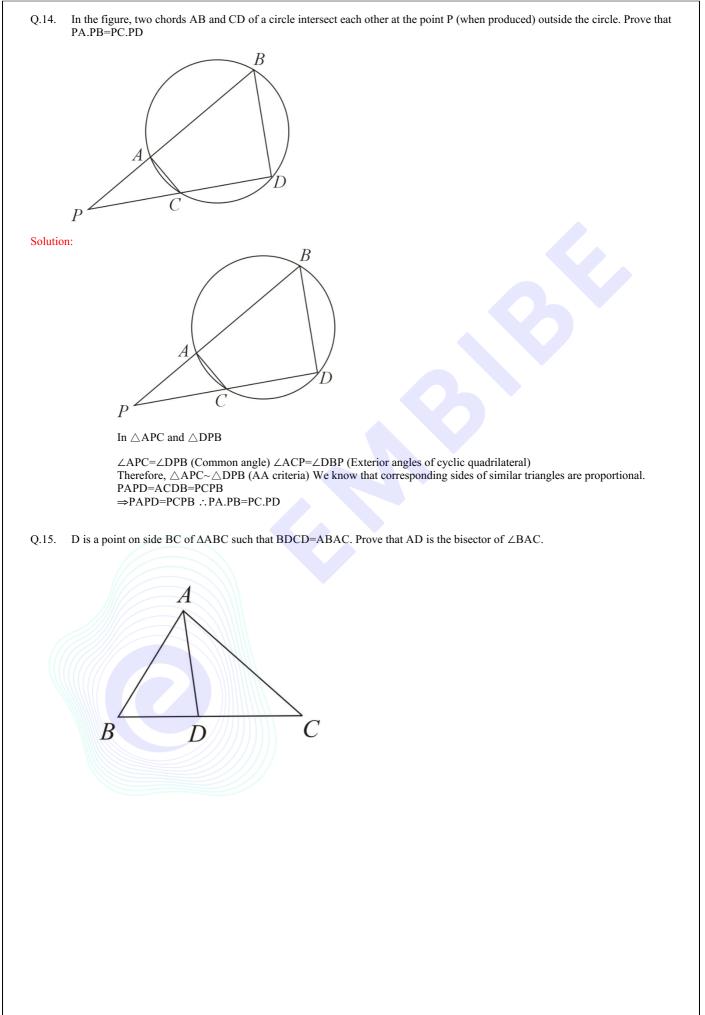


Q.13. In the figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that $\triangle PAC \sim \triangle PDB$.



In $\triangle PAC$ and $\triangle PDB$

 $\angle APC = \angle DPB$ (Common angle) $\angle ACP = \angle DBP$ (Exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.) Therefore, $\triangle PAC \sim \triangle PDB$ (AA criteria)



Solution:

Construct a line CE parallel to DA which meets BA produced at E.

Therefore, $\angle BAD = \angle BEC$ (Corresponding angles).....(1) $\angle DAC = \angle ACE$ (Alternate angles).....(2) In $\triangle DBA$ and $\triangle CBE$, BDCD=ABAC (Given)(3) BDCD=BAAE (Basic proportionality theorem)(4) From (3) and (4), AE=AC Therefore, $\angle ACE = \angle BEC$(5) So, from (1), (2) and (5) $\Rightarrow \angle BAD = \angle DAC$ Therefore, AD is angle bisector of $\angle BAC$.