Saas ৰ জৰিয়তে AI আনলক কৰা
মেধাছ
মেধা হৈছে এটা সংস্কৃত শব্দ, যাৰ অৰ্থ হৈছে জ্ঞান, বুজাবুজি আৰু বুদ্ধিমত্তা। এডটেক AI প্লেটফৰ্ম এখন নিৰ্মাণ কৰিবলৈ প্ৰাকৃতিক ভাষা বুজা (NLU) প্লেটফৰ্ম অতি গুৰুত্বপূৰ্ণ। NLU ক্ষমতাবোৰে শিক্ষাৰ্থীসকলৰ বাবে শিক্ষণ ফলাফল প্ৰাপ্ত কৰিবলৈ, অনুমোদন জনাবলৈ অথবা সমল সৃষ্টি কৰিবলৈ হাইপাৰ টেগ কৰা শিক্ষণ আৰু মূল্যাঙ্কন সমল, প্ৰাসঙ্গিক জ্ঞান গ্ৰাফ, অনুবাদযোগ্য আৰু ব্যাখ্যাযোগ্য পূৰ্বানুমান সক্ষম কৰি তোলে। ই প্ৰত্যক্ষভাৱে অত্যাধুনিক প্ৰদৰ্শন কৰাত সহায় কৰাৰ কেইটামান উদাহৰণ হৈছে সমল বুদ্ধিমত্তাৰ কাম যেনে প্ৰশ্নৰ সৃষ্টি, প্ৰশ্নৰ উত্তৰ দিয়া, সন্দেহ সমাধান, তাৎক্ষণিক সমাধানকাৰী ইত্যাদি।
কৃত্ৰিম বুদ্ধিমত্তা বহুদূৰ আগবাঢ়িছে, গভীৰ শিক্ষণ কৌশলে বিভিন্ন ড’মেইন এপ্লিকেশ্যনৰ ওপৰত ইয়াৰ সম্ভাৱনাক শ্ৰেষ্ঠৰূপে প্ৰতিপন্ন কৰিছে ।অৱশ্যে, কৃত্ৰিম বুদ্ধিমত্তাৰ বৰ্তমান পৰ্যায়টোত প্ৰশিক্ষণ তথ্যত পৰিসাংখ্যিকভাৱে সংগ্ৰহ কৰা সুপ্ত আৰ্হি শিকণৰ দ্বাৰা প্ৰশিক্ষণ প্ৰাপ্ত ব্লেক-বক্স আৰ্হিৰ আধিপত্য আছে । এই আৰ্হিবোৰ কেৱল দুৰ্বোধ্যই নহয়, এইবোৰ স্পষ্টভাৱে নিৰ্ধাৰিত ড’মেইন পৰিস্থিতিতো আক্ৰান্ত হোৱাৰ সম্ভাৱনাৰে পৰিপূৰ্ণ।
প্লেটফ’ৰ্ম মেধাৰ লক্ষ্য হৈছে:
- গভীৰ শিক্ষণ আৰ্হিবোৰ ব্যাখ্যাযোগ্য আৰু বোধগম্য কৰি তোলা
- জ্ঞান লেখচিত্ৰত স্পষ্টভাৱে নিৰ্ধাৰিত বিষয়-ভিত্তিক জ্ঞান গভীৰ শিক্ষণ আৰ্হিবোৰত অন্তৰ্ভুক্ত কৰা
- গভীৰ শিক্ষণ আৰ্হিবোৰ এজ ডিভাইচ আৰু সম্পদ-সীমাবদ্ধ ছেটিংছত উপলব্ধ কৰোৱা ।
- অন্য অৰ্থত, লোকেল অন ডিভাইছ সক্ৰিয় কৰাৰ অৰ্থে মডেল অপ্টিমাইজেশ্যন।
আমি জ্ঞানগ্ৰাফৰ পৰা আত্ম-মনোযোগ আধাৰিত মডেলত জ্ঞান এম্বেডিং (embedding) অন্তৰ্ভুক্ত কৰোঁ। উদাহৰণ স্বৰূপে, আমি ConceptNet ৰ পৰা “অমনোযোগিতা” ৰ দৰে ধাৰণামূলক বস্তুবোৰৰ এম্বেডিং অন্তৰ্ভুক্ত কৰিছিলো আৰু ইয়াক বি.ই.আৰ.টি.-তো (BERT) অনুৰূপ ইয়াৰ টোকেন এম্বেডিং প্ৰদান কৰিছিলো। “মনোযোগহীনতা”ৰ বাবে জ্ঞান এম্বেডিং অন্তৰ্ভুক্ত কৰাৰো একেই প্ৰক্ৰিয়া। সেয়েহে, পৰৱৰ্তী আত্ম-মনোযোগ স্তৰে “অন্যমনস্কতা” আৰু “অমনোযোগিতাৰ” বিষয়বোৰৰ একত্ৰিত জ্ঞান আৰু টোকেন এম্বেডিংৰ প্ৰতি মনোযোগ দিব।
যিহেতু অমনোযোগিতা আৰু মনোযোগহীতা ভালেখিনি একেই হ’ব, আৰ্হিটোৱে এটা আভাস পাব যে এই দুইটা বিষয় অনুৰূপ।
ওপৰোক্ত উদাহৰণত, আমি WordNet ৰ পৰা “ভৰ” আৰু “ব্যাসাৰ্ধ”ৰ দৰে অস্পষ্ট বিষয়বোৰৰ জ্ঞান এম্বেডিং লাভ কৰোঁ আৰু ইয়াক BERT ৰ আত্ম-মনোযোগ স্তৰত ইয়াৰ টোকেন এম্বেডিঙৰ সৈতে অন্তৰ্ভুক্ত কৰোঁ।
সেয়েহে, পৰৱৰ্তী আত্ম-মনোযোগ স্তৰে অস্পষ্ট বিষয়বোৰৰ সংযুক্ত জ্ঞান এম্বেডিং আৰু টোকেন এম্বেডিঙৰ প্ৰতি গুৰুত্ব দিব আৰু ইয়ে আৰ্হিটোক ইনপুট বাক্যটো ভালদৰে বুজাত সহায় কৰিব।
জ্ঞানৰ অন্তৰ্ভুক্তিয়ে কেনেদৰে বোধগম্য আত্মবিশ্বাস প্ৰদান কৰে:
আমি ওপৰোক্ত উদাহৰণত (অন্তিমৰ পৰা দ্বিতীয় শাৰী) দেখিবলৈ পাওঁ যে, “সেউজগৃহ প্ৰভাৱ” আৰু “ট্ৰেপিং” আৰু “অৱশোষণ”ৰ দৰে অস্পষ্ট বিষয় সংযোগ দিয়াৰ পিছত, ই সঠিক পূৰ্বানুমান প্ৰদান কৰাৰ উপৰিও আমি অধিক সত্তা সংযোগ কৰি দিলে ইয়াৰ পূৰ্বানুমান কৰাৰ আত্মবিশ্বাসো 60.55% লৈ বৃদ্ধি হয়।
যেতিয়া আমি ক্ৰমান্বয়ে “সৌৰ শক্তি” আৰু “কাৰণ”ৰ দৰে অধিক অস্পষ্ট আৰু ধাৰণামূলক বিষয় সংযোগ কৰিছিলো, আত্মবিশ্বাস আৰু অধিক বৃদ্ধি হৈ 61.97% হৈছিল।
সংক্ষিপ্তকৰণ কৰিবলৈ হ’লে, আমি অধিক অৰ্থপূৰ্ণ বিষয় সংযোগ কৰিলে ই কেৱল সঠিক পূৰ্বানুমান কৰাই নহয় (ভেনিলা BERT য়ে ভুল ভৱিষ্যতবাণী কৰাৰ বিপৰীতে), ই মডেলটোৰ আত্মবিশ্বাসো বৃদ্ধি কৰে।
মেধা প্লেটফৰ্মখন Embibeৰ শিক্ষা গৱেষণা পৰীক্ষাগাৰত দ্বাৰা প্ৰস্তুত কৰা হৈছে। শিক্ষা গৱেষণা পৰীক্ষাগাৰ হৈছে বিশাল প্ৰভাৱৰ সৈতে মুখ্য মুকলি সমস্যাবোৰ চিনাক্ত কৰিবলৈ আৰু প্ৰকৃত মূল্য প্ৰস্তাৱ উদ্ভাৱন কৰি কলা গৱেষণাৰ অৱস্থাক ঠেলি দিয়াৰ এক বিশেষ শৃংখলাবদ্ধ প্ৰয়াস।
প্ৰসঙ্গ:
[4] Keyur Faldu. “Rise of Modern NLP and the Need of Interpretability!” Towards Data Science, August 2020.
[5] Keyur Faldu, Dr Amit Sheth. “Discovering the Encoded Linguistic Knowledge in NLP models.” Towards Data Science, September 2020.
[6] Keyur Faldu, Dr Amit Sheth. “Linguistics Wisdom of NLP Models.” Towards Data Science, November 2020.
[8] Faldu, Keyur, Aditi Avasthi, and Achint Thomas. “Adaptive learning machine for score improvement and parts thereof.” U.S. Patent 10,854,099, issued December 1, 2020.
[9] Dhavala, Soma, Chirag Bhatia, Joy Bose, Keyur Faldu, and Aditi Avasthi. “Auto Generation of Diagnostic Assessments and Their Quality Evaluation.” International Educational Data Mining Society (2020).
[10] Faldu, Keyur, Achint Thomas, and Aditi Avasthi. “System and method for recommending personalized content using contextualized knowledge base.” U.S. Patent Application 16/586,512, filed October 1, 2020.
[11] Thomas, Achint, Keyur Faldu, and Aditi Avasthi. “System and method for personalized retrieval of academic content in a hierarchical manner.” U.S. Patent Application 16/740,223, filed October 1, 2020.
[12] “#RAISE2020 – Embibe – AI-Powered learning outcomes platform for personalized education”, MyGov India, Oct 2020, https://www.youtube.com/watch?v=kuwFtHgN3qU
← AI হোমলৈ ঘূৰি যোৱা