Arun Sharma Solutions for Exercise 2: Level of Difficulty

Author:Arun Sharma

Arun Sharma Quantitative Aptitude Solutions for Exercise - Arun Sharma Solutions for Exercise 2: Level of Difficulty

Attempt the free practice questions from Exercise 2: Level of Difficulty with hints and solutions to strengthen your understanding. How to prepare for Quantitative Aptitude for the CAT solutions are prepared by Experienced Embibe Experts.

Questions from Arun Sharma Solutions for Exercise 2: Level of Difficulty with Hints & Solutions

EASY
CAT
IMPORTANT

In a ΔPQR, X, Y, Z are points on sides PQ, QR, PR such that PX:XQ=1:1, PZ:ZR=1:2, QY:YR=2:3. What is the ratio of the area of quadrialteral XYRZ to that of ΔPXZ?

EASY
CAT
IMPORTANT

ABCD is a square with sides of length 10 units. OCD is an isosceles triangle with base CDOC cuts AB at point Q and OD cuts AB at point P. The area of trapezoid PQCD is 80 square units. The altitude from O of the triangle OPQ is:

EASY
CAT
IMPORTANT

In a triangle ABC the length of side BC is 295. If the length of side AB is a perfect square, then the length of side AC is a power of 2, and the length of side AC is twice the length of side AB. Determine the perimeter of the triangle.

EASY
CAT
IMPORTANT

ABCD is a parallelogram with ABC=60o. If the longer diagonal is of length 7 cm and the area of the parallelogram ABCD is 15 32 cm2, then the perimeter of the parallelogram (in cm) is:

EASY
CAT
IMPORTANT

A city has a park shaped as a right angled triangle. The length of the longest side of this park is 80 m. The Mayor of the city wants to construct three paths from the corner point opposite to the longest side such that these three paths divide the longest side into four equal segments. Determine the sum of the squares of the lengths of the three paths (in m2)

EASY
CAT
IMPORTANT

Let P1 be the circle of radius rA square Q1 is inscribed in P1 such that all the vertices of the square Q1 lie on the circumference of P1. Another square Q2 is inscribed in the circle P2. Circle P3 is inscribed in the square Q2 and so on. If SN is the area between QN and PN-1 where N represents the set of natural numbers. If the ratio of sum of all such SN to that of the area of the square Q1 is a-πb then a+b=?

Question Image

EASY
CAT
IMPORTANT

In the figure, ABCDEF is a regular hexagon and PQR is an equilateral triangle of side 'a'. The area of the shaded portion is 233 cm2 and CD:PQ::2:1.

If the area of the circle circumscribing the hexagon is Xπ cm2 then X=?

Question Image

EASY
CAT
IMPORTANT

A series of infinite concentric squares are drawn as shown below. Starting with the first square ABCD, subsequent squares drawn are PQRS, XYZW and so on as shown in the diagram. If areas of the squares ABCD, PQRS, XYZW,... are 1, 32, 74, 158... and so on, then find the area of the diagram when the infinite number square is drawn.

Question Image