Embibe Experts Solutions for Chapter: Indefinite Integration, Exercise 1: Exercise-1

Author:Embibe Experts

Embibe Experts Mathematics Solutions for Exercise - Embibe Experts Solutions for Chapter: Indefinite Integration, Exercise 1: Exercise-1

Attempt the free practice questions on Chapter 29: Indefinite Integration, Exercise 1: Exercise-1 with hints and solutions to strengthen your understanding. Alpha Question Bank for Engineering: Mathematics solutions are prepared by Experienced Embibe Experts.

Questions from Embibe Experts Solutions for Chapter: Indefinite Integration, Exercise 1: Exercise-1 with Hints & Solutions

MEDIUM
JEE Main/Advance
IMPORTANT

Evaluate the following :

xx+1-ln(x+1)x(ln(x+1))dx

HARD
JEE Main/Advance
IMPORTANT

Integrate with respect to x :

3x+2(x+1)2(x+2)

HARD
JEE Main/Advance
IMPORTANT

Evaluate the following :1+xxdx

HARD
JEE Main/Advance
IMPORTANT

Evaluate the following: sinx+cosx9+16sin2xdx

HARD
JEE Main/Advance
IMPORTANT

If In=1x2+a2ndx then prove that In=x2(n-1)x2+a2n-1+2n-32(n-1)In-1, nN, n2

HARD
JEE Main/Advance
IMPORTANT

If In=xn(a-x)12dx then prove that In=2an2n+3In-1-2xn(a-x)322n+3

HARD
JEE Main/Advance
IMPORTANT

If In=exxndx and In=-exk1xn-1+1k2-1In-1, nN, n2, then k2-k1 is equal to: