Embibe Experts Solutions for Chapter: Vector Algebra, Exercise 1: Kerala Board-2018

Author:Embibe Experts

Embibe Experts Mathematics Solutions for Exercise - Embibe Experts Solutions for Chapter: Vector Algebra, Exercise 1: Kerala Board-2018

Attempt the free practice questions on Chapter 10: Vector Algebra, Exercise 1: Kerala Board-2018 with hints and solutions to strengthen your understanding. EMBIBE CHAPTER WISE PREVIOUS YEAR PAPERS FOR MATHEMATICS solutions are prepared by Experienced Embibe Experts.

Questions from Embibe Experts Solutions for Chapter: Vector Algebra, Exercise 1: Kerala Board-2018 with Hints & Solutions

EASY
12th Kerala Board
IMPORTANT

The position vector of three points A, B, C are given to be i^+3j^+3k^, 4i^+4k^ and -2i^+4j^+2k^ respectively. Find AB and AC.

MEDIUM
12th Kerala Board
IMPORTANT

The position vector of three points A, B, C are given to be i^+3j^+3k^, 4i^+4k^ and -2i^+4j^+2k^ respectively. Find the angle between AB and AC.

HARD
12th Kerala Board
IMPORTANT

The position vector of three points A, B, C are given to be i^+3j^+3k^, 4i^+4k^ and -2i^+4j^+2k^ respectively. Find a vector which is perpendicular to both AB and AC having magnitude 9 units.

EASY
12th Kerala Board
IMPORTANT

If a, b, c are coplanar vectors, write the vector perpendicular to a.

MEDIUM
12th Kerala Board
IMPORTANT

If a, b, c are coplanar, prove that a+b, b+c, c+a are coplanar.

EASY
12th Kerala Board
IMPORTANT

If a, b, c are three coplanar vectors, then a b c is

 

EASY
12th Kerala Board
IMPORTANT

If a=2, b=3 and θ is the angle between a and b. Then maximum value of a·b occurs when θ=.................

MEDIUM
12th Kerala Board
IMPORTANT

If b=2i+j-k, c=i+3k and a is a unit vector. Find the maximum value of Scalar triplet product a b c.