EASY
Earn 100

A block of mass M is held against a rough vertical wall by pressing it with a finger. If the coefficient of friction between the block and the wall is μ and the acceleration due to gravity is g, the minimum force required to be applied by the finger to hold the block against the wall is:

45.45% studentsanswered this correctly

Important Questions on Friction

EASY
Which of the following surface in contact has maximum coefficient of friction μ?
EASY
A thin motorcyclist rides with sufficient speed in the vertical plane inside a hollow sphere of diameter 20 m to prevent himself from sliding down. If the coefficient of friction is 0.5, then what is the minimum speed of the motor cyclist? (use g=10 m s-2)
HARD

A uniform rope of total length l is at rest on a table with fraction f of its length hanging (see figure). If the coefficient of friction between the table and the chain is μ, then

Question Image

HARD
A given object takes n times more time to slide down a 45o rough inclined plane as it takes to slide down a perfectly smooth 45o incline. The coefficient of kinetic friction between the object and the incline is:
MEDIUM

Consider the system shown below.

Question Image

A horizontal force F is applied to a block X of mass 8 kg such that the block Y of mass 2 kg adjacent to it does not slip downwards under gravity. There is no friction between the horizontal plane and the base of the block X. The coefficient of friction between the surfaces of the blocks X and Y is 0.5. Take acceleration due to gravity to be 10 m s-2. The minimum value of F is

EASY
A bag is gently dropped on a conveyor belt moving at a speed of 2 m s-1. The coefficient of friction between the conveyor belt and bag is 0.4. Initially, the bag slips on the belt before it stops due to friction. The distance travelled by the bag on the belt during slipping motion is : [Take g=10 m s-2]
MEDIUM
Block A of mass 3 kg rests on another block B of mass 7 kg. The coefficient of friction between A and B is 0.4 while the coefficient of friction between B and the horizontal floor on which B rests is 0.55. Find the force of friction between A and B, when a horizontal force of 50 N is applied on the block B.
(Use g=10 m/s2)
EASY
A block is released from rest on a 45° smooth incline and slide a distance d. The time taken to slide the same distance is n times as much to slide on a 45° rough incline than on the smooth incline. The coefficients of friction for the rough incline is
MEDIUM
A heavy box is to be dragged along a rough horizontal floor. To do so, the person A pushes it at an angle 30° from the horizontal and requires a minimum force FA, while the person B pulls the box at an angle 60° from the horizontal and needs minimum force FB. If the coefficient of friction between the box and the floor is 35, the ratio FAFB is
HARD

A block of mass 5 kg is (i) pushed in case A and (ii) pulled in case B, by a force F=20 N, making an angle of 30o with the horizontal, as shown in the figures. The coefficient of friction between the block and floor is μ=0.2. The difference between the accelerations of the block, in case B and case A will be:
g=10m s-2
Question Image

EASY
Question Image

Given in the figure are two blocks A and B of weight 20 N and 100 N, respectively. These are being pressed against a wall by a force F and kept in equilibrium as shown. If the coefficient of friction between the blocks is 0.1 and between block B and the wall is 0.15, the frictional force applied by the wall on block B is:
MEDIUM
A block A of mass m1 rests on a horizontal table. A light string connected to it passes over a frictionless pulley at the edge of table and from its other end another block B of mass m2 is suspended. The coefficient of kinetic friction between the block and the table is μk. When the block B is sliding on the table, the tension in string is:
EASY
A block A of mass 4 kg is placed on another block B of mass 5 kg, and the block B rests on a smooth horizontal table. If the minimum force that can be applied on A so that both the blocks move together is 12 N, the maximum force that can be applied on B for the blocks to move together will be :
EASY
Frictional forces act in a direction
EASY
A body of mass 2 kg is kept by pressing to a vertical wall by a force of 100 N. The friction between wall and body is 0.3. Then the frictional force is equal to
EASY
Meena applies the front brakes while riding on her bicycle along a flat road. The force that slows her bicycle is provided by the
EASY
A block rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.8 . If the frictional force on the block is 10 N, the mass of the block is g=10 m s-2
EASY
A block placed on the horizontal is pushed momentarily with initial velocity v. The coefficient of friction between the block and surface is μ. Block will come to rest after a time t equal to (g= acceleration due to gravity)
HARD
A small box resting on one edge of the table is struck in such a way that it slides off the other edge, 1 m away, after 2 seconds. The coefficient of kinetic friction between the box and the table
MEDIUM
A block of mass 10 kg is kept on a rough inclined plane as shown in the figure. A force of 3 N is applied on the block. The coefficient of static friction between the plane and the block is 0.6. What should be the minimum value of force P, such that the block does not move downward? (take g=10 m s-2)
Question Image