HARD
Earn 100

A is a square matrix of order 3 × 3 and I is a unit matrix of order 3 × 3. If | A | = 2 and AA' = I then the determinant value of the matrix (A – I) is equal to

50% studentsanswered this correctly

Important Questions on Matrices and Determinants

MEDIUM
If A=-4-131 , then the determinant of the matrix A2016-2A2015-A2014 is :
HARD
If Δr=r2r-13r-2n2n-1a12nn-1 n-1212n-13n+4, then the value of r=1n1Δr
MEDIUM
Let a,b,c be such that (b+c)0 and

aa+1a-1-bb+1b-1cc-1c+1+a+1b+1c-1a-1b-1c+1-1n+2a-1n-1b-1nc=0

Then the value of n is
HARD
Let two points be A1,-1 and B0,2. If a point Px', y' be such that the area of PAB=5 sq. units and it lies on the line 3x+y-4λ=0, then a value of λ is
EASY
Let fx=x372x276x . If x=-9 is a root of fx=0 , then the other roots are
MEDIUM
A value of θ0,π3, for which 1+cos2θsin2θ4cos6θcos2θ1+sin2θ4cos6θcos2θsin2θ1+4cos6θ=0, is
HARD
If area of triangle is 35 sq. units with vertices  2,-6,5,4 and k,4, then k is
EASY
If fx=1112xx-1x3xx-1x-1x-2xx-1 , then f50=
MEDIUM
Let a-2b+c=1.
If fx=x+ax+2x+1x+bx+3x+2x+cx+4x+3, then:
MEDIUM
If a1,a2,..,an,. are in G.P. then log anlog an+1log an+2log an+3log an+4log an+5log an+6log an+7log an+8 is
EASY
Let A=aij and B=bij be two 3×3 real matrices such that bij=3i+j-2aij , where i,j=1,2,3 . If the determinant of B  is  81,   then determinant of A i  s
HARD
Let α  and β be the roots of the equation x2+x+1=0. Then for y0 in R, y+1αβαy+β1β1y+α is equal to
EASY
Three vertices of ABC are A1, 4, B-2, 2 and C3, 2. Then the area of ABC is
EASY
If the matrix 12-1-34k-426 is singular, then the value of k is equal to
MEDIUM
The value of the determinant bccaaba3b3c31a1b1c is
HARD
If α, β0, fn=αn+βn and 31+f11+f21+f11+f21+f31+f21+f31+f4=K1-α21-β2α-β2, then K is equal to 
MEDIUM
If x=1cosx1-cosx1+sinxcosx1+sinx-cosxsinxsinx1 , then 0π2x dx=
HARD
Let a1, a2, a3,a10 be in G.P. with ai>0  for i=1, 2, , 10 and S be the set of pairs r, k, r, kN (the set of natural numbers) for which

logea1r a2klogea2ra3klogea3ra4klogea4r a5klogea5ra6klogea6ra7klogea7ra8klogea8ra9klogea9ra10k=0

Then the number of elements in S, is: