EASY
JEE Main/Advanced
IMPORTANT
Earn 100

An aqueous solution of AgNO3 is electrolysed using direct current. The electrodes are inert and time dependence of current is represented as

Question Image 

The mass (in mg ) of Ag108 g/mol deposited at cathode is [Given F=96000C ]

50% studentsanswered this correctly

Important Points to Remember in Chapter -1 - Electrochemistry from Embibe Experts Gamma Question Bank for Engineering Chemistry Solutions

1. Electrochemical Cells:

For any electrode Oxidation potential =-Reduction potential.

Ecell= Reduction potential of cathode Reduction potential of anode.

Ecell= Reduction potential of cathode +Oxidation potential of anode.

Ecell is always a positive quantity for a spontaneous reaction; Anode will be electrode of low reduction potential and Cathode will be of high reduction potential.

Ecell= SRP of cathode -SRP of anode. (SRP = Standard Reduction Potential)

The greater is the SRP value, the greater will be oxidising power.

2. Different types of Electrodes:

(i) Metal-metal ion electrode M+n|M

Mn++ne-Ms

(ii) Gas-ion Electrode  PtH2P atmH+X M

As reduction electrode , H+aq+e-12H2P atm, E=E°-0.0591logPH212H+

(iii) Oxidation-reduction electrode  Pt|Fe2+,Fe3+

As reduction electrode,   Fe3++e-Fe2+ E=E-0.0591logFe2+Fe3+

(iv) Metal-metal insoluble salt electrode  e.g., Ag|AgCl,Cl-

As reduction electrode,  AgCls+e-Ags+Cl-.

 ECl-AgClAg=ECl-AgClAg0-0.0591logCl-

3. Gibbs Free Energy Change:

ΔG=-nFEcell

4. Nernst Equation:

(Effect of concentration and temperature on emf of cell)

ΔG=ΔG°+RTlnQ (where  Q is reaction quotient)

ΔG°=-RTlnKeq

Ecell=Ecell-2.303RTnFlogQ

Ecell=Ecell-0.0591nlogQ     At 298 K

At chemical equilibrium: ΔG=0 ;  Ecell=0

logKeq=nEcell00.0591

Ecell0=0.0591nlogKeq

5. Concentration Cell:

A cell in which both the electrodes are made up of the same material.

For all concentration cell,

Ecell=0

(i) Electrolyte Concentration Cell:

e.g., Zn(s)|Zn2+(c1)Zn2+(c2)|Zn(s)      E=0.05912logC2C1

(ii) Electrode Concentration Cell:

e.g.,  Pt,H2(P1atm)|H+(1M)|H2(P2 atm)|Pt        E=0.05912logP1P2

6. Calculation of different Thermodynamics Function of Cell Reaction:

ΔG=-nFEcell

S=-dGdTP (At constant pressure)

ΔS=-dΔGdTP=nFddtEcellP

ETP=Temperature coefficient of emf of the cell.

ΔH=nFTETP-E

ΔCp of cell reaction:

CP=dHdT

ΔCP=ddTΔH

ΔCP=nFTd2EcelldT2

7. Electrolysis:

(i) K+,Ca+2,Na+,Mg+2,Al+3,Zn+2,Fe+2,H+,Cu+2,Ag+,Au+3Increasing order of deposition. >

(ii) Similarly, the anion which is stronger reducing agent (low value of  SRP) is liberated first at the Anode.

SO42-,NO3-,OH-,Cl-,Br-,I-Increasing order of deposition >

8. Faraday's Law of Electrolysis:

(i) First Law:

w=Zq  w=Zit  Where Z=Electrochemical equivalent of substance.

(ii) Second Law:

W α E    or   WE=constant W1E1=W2E2

WE=i×t× current efficiency factor 96500

Current efficiency = Actual mass deposited/produced Theoretical mass deposited/produced×100

9. Conductance in Electrolytic Solutions:

(i) Conductance =1 Resistance 

(ii) Specific conductance or conductivity:

(Reciprocal of specific resistance) κ=1ρ    κ = specific conductance

specific conductance=conductance×la

(iii) Equivalent conductance:

ΛE=κ×1000 Normality  unit:  ohm-1cm2eq-1

(iv) Molar conductance:

Λm=κ×1000Molarity  unit:  ohm-1cm2mole-1

10. Kohlrausch's Law:

Variation of  λeq & λM of a solution with concentration:

(i) Strong electrolyte  λMc=λM-bc

(ii) For both strong and weak electrolytes:

λ=n+λ++n-λ where  λ is the molar conductivity.

n+ = No. of cations obtained after dissociation per formula unit.

n- =No. of anions obtained after dissociation per formula unit.

11. Application of Kohlrausch’s Law:

(i) Calculation of  λm0 of weak electrolytes:

λMCH3COOHo=λMCH3COONa0+λMHCl0-λMNaCl0

(ii) To calculate degree of dissociation of a weak electrolyte

α=λm λm0;   Keq=cα21-α

(iii) Solubility Sof sparingly soluble salt & their  Ksp

λM=λMo=κ×1000 solubility     Ksp=S2

(iv) Ionic mobility: It is the distance travelled by the ion per second under the potential gradient of  1 volts per  cm. Its unit is  cm2s-1v-1.

(v) Absolute ionic mobility:

λco  α  μc;     λa0μa

λc0=F×μc0;    λa0=F×μa0

Ionic Mobitity μ=SpeedPotential gradient=vVl

(vi) Transport Number:

tc=μcμc+μa,    ta=μaμa+μc

Where  tc= Transport Number of cation &  ta= Transport Number of anions.