MEDIUM
11th Tamil Nadu Board
IMPORTANT
Earn 100

Calculate mean deviation about mean for the following data:
 Age in years 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45
Number of persons 7 10 16 32 24 18 10 5 1

Important Points to Remember in Chapter -1 - Measures of Dispersion from Tamil Nadu Board Statistics Standard 11 Solutions

1. Absolute measure of dispersion:

(i) Range:

The range is the difference between the largest and smallest observations.

(ii) Variance:

σ2=X-μ2N

(iii) Standard Deviation:

S.D=σ

(iv) Quartiles and Quartile Deviation:

The quartile deviation is half of the distance between the third and the first quartile.

(v) Mean:

μ=Sum of all observationsNumber of observations

(vi) Mean deviation:

The arithmetic mean of the absolute deviations of the observations from a measure of central tendency is known as the mean deviation.

2. Relative measure of dispersion:

(i) Coefficient of range:

Coefficient of range =Xmax-XminXmax+Xmin

(ii) Coefficient of variation:

Coefficient of variation =σμ

(iii) Coefficient of standard deviation:

Coefficient of standard deviation =σμ

(iv) Coefficient of quartile deviation:

Coefficient of quartile deviation =Q3-Q1Q3+Q1

(v) Coefficient of mean deviation:

Coefficient of mean deviation =Mean deviationAverage

3. Moments:

(i) Raw Moments:

Raw moments  Raw data (d=x-A) Discrete data (d=x-A) Continuous data d=(x-A)c
μ1' Σdn ΣfdN fdN×c
μ2' Σd2n ΣfdN2 fd2N×c2
μ3' Σd3n ΣfdN3 fd3N×c3
μ4' Σd4n ΣfdN4 fd4N×c4

(ii) Central Moments:

Central moments  Raw data Discrete data  Continuous data d'=(x-x¯)c
μ1 f(x-x¯)2N=0 f(x-x¯)N=0 fdN×c
μ2 f(x-x¯)2N=0 f(x-x¯)2N=σ2 fd2N×c2
μ3 f(x-x¯)3N=0 f(x-x¯)3N fd3N×c3
μ4 f(x-x¯)4N=0 f(x-x¯)4N fd4N×c4

4. Measures of skewness:

(i) Karl-Pearson coefficient of skewness:

Karl- Pearson coefficient of skewness = Mean - Mode  S.D 

(ii) Bowley's coefficient of skewness:

Bowley's coefficient of skewness =Q3+Q1-2Q2Q3-Q1

(iii) Coefficient of skewness based on moments:

β1=μ32μ23

5. Measures of Kurtosis:

β2=μ4μ22