EASY
JEE Main/Advanced
IMPORTANT
Earn 100

Correct statements from the below is/are
(I) Cell potential of Ni-Cd cell remains constant during its lifetime.
(II) The output of fuel cell is lower than the theoretically expected.
(III) Concentration of H2SO4 in Pb-storage battery decreases during charging of the battery.
(IV) The cell potential remains constant in Hg-cell as the overall reaction does not involve ions concentration.

43.75% studentsanswered this correctly

Important Points to Remember in Chapter -1 - Electrochemistry from Embibe Experts Gamma Question Bank for Engineering Chemistry Solutions

1. Electrochemical Cells:

For any electrode Oxidation potential =-Reduction potential.

Ecell= Reduction potential of cathode Reduction potential of anode.

Ecell= Reduction potential of cathode +Oxidation potential of anode.

Ecell is always a positive quantity for a spontaneous reaction; Anode will be electrode of low reduction potential and Cathode will be of high reduction potential.

Ecell= SRP of cathode -SRP of anode. (SRP = Standard Reduction Potential)

The greater is the SRP value, the greater will be oxidising power.

2. Different types of Electrodes:

(i) Metal-metal ion electrode M+n|M

Mn++ne-Ms

(ii) Gas-ion Electrode  PtH2P atmH+X M

As reduction electrode , H+aq+e-12H2P atm, E=E°-0.0591logPH212H+

(iii) Oxidation-reduction electrode  Pt|Fe2+,Fe3+

As reduction electrode,   Fe3++e-Fe2+ E=E-0.0591logFe2+Fe3+

(iv) Metal-metal insoluble salt electrode  e.g., Ag|AgCl,Cl-

As reduction electrode,  AgCls+e-Ags+Cl-.

 ECl-AgClAg=ECl-AgClAg0-0.0591logCl-

3. Gibbs Free Energy Change:

ΔG=-nFEcell

4. Nernst Equation:

(Effect of concentration and temperature on emf of cell)

ΔG=ΔG°+RTlnQ (where  Q is reaction quotient)

ΔG°=-RTlnKeq

Ecell=Ecell-2.303RTnFlogQ

Ecell=Ecell-0.0591nlogQ     At 298 K

At chemical equilibrium: ΔG=0 ;  Ecell=0

logKeq=nEcell00.0591

Ecell0=0.0591nlogKeq

5. Concentration Cell:

A cell in which both the electrodes are made up of the same material.

For all concentration cell,

Ecell=0

(i) Electrolyte Concentration Cell:

e.g., Zn(s)|Zn2+(c1)Zn2+(c2)|Zn(s)      E=0.05912logC2C1

(ii) Electrode Concentration Cell:

e.g.,  Pt,H2(P1atm)|H+(1M)|H2(P2 atm)|Pt        E=0.05912logP1P2

6. Calculation of different Thermodynamics Function of Cell Reaction:

ΔG=-nFEcell

S=-dGdTP (At constant pressure)

ΔS=-dΔGdTP=nFddtEcellP

ETP=Temperature coefficient of emf of the cell.

ΔH=nFTETP-E

ΔCp of cell reaction:

CP=dHdT

ΔCP=ddTΔH

ΔCP=nFTd2EcelldT2

7. Electrolysis:

(i) K+,Ca+2,Na+,Mg+2,Al+3,Zn+2,Fe+2,H+,Cu+2,Ag+,Au+3Increasing order of deposition. >

(ii) Similarly, the anion which is stronger reducing agent (low value of  SRP) is liberated first at the Anode.

SO42-,NO3-,OH-,Cl-,Br-,I-Increasing order of deposition >

8. Faraday's Law of Electrolysis:

(i) First Law:

w=Zq  w=Zit  Where Z=Electrochemical equivalent of substance.

(ii) Second Law:

W α E    or   WE=constant W1E1=W2E2

WE=i×t× current efficiency factor 96500

Current efficiency = Actual mass deposited/produced Theoretical mass deposited/produced×100

9. Conductance in Electrolytic Solutions:

(i) Conductance =1 Resistance 

(ii) Specific conductance or conductivity:

(Reciprocal of specific resistance) κ=1ρ    κ = specific conductance

specific conductance=conductance×la

(iii) Equivalent conductance:

ΛE=κ×1000 Normality  unit:  ohm-1cm2eq-1

(iv) Molar conductance:

Λm=κ×1000Molarity  unit:  ohm-1cm2mole-1

10. Kohlrausch's Law:

Variation of  λeq & λM of a solution with concentration:

(i) Strong electrolyte  λMc=λM-bc

(ii) For both strong and weak electrolytes:

λ=n+λ++n-λ where  λ is the molar conductivity.

n+ = No. of cations obtained after dissociation per formula unit.

n- =No. of anions obtained after dissociation per formula unit.

11. Application of Kohlrausch’s Law:

(i) Calculation of  λm0 of weak electrolytes:

λMCH3COOHo=λMCH3COONa0+λMHCl0-λMNaCl0

(ii) To calculate degree of dissociation of a weak electrolyte

α=λm λm0;   Keq=cα21-α

(iii) Solubility Sof sparingly soluble salt & their  Ksp

λM=λMo=κ×1000 solubility     Ksp=S2

(iv) Ionic mobility: It is the distance travelled by the ion per second under the potential gradient of  1 volts per  cm. Its unit is  cm2s-1v-1.

(v) Absolute ionic mobility:

λco  α  μc;     λa0μa

λc0=F×μc0;    λa0=F×μa0

Ionic Mobitity μ=SpeedPotential gradient=vVl

(vi) Transport Number:

tc=μcμc+μa,    ta=μaμa+μc

Where  tc= Transport Number of cation &  ta= Transport Number of anions.