MEDIUM
12th CBSE
IMPORTANT
Earn 100

Find a unit vector perpendicular to each of the vector a+b and a-b, where a=3i^+2j^+2k^ and b=i^+2j^-2k^.

Important Points to Remember in Chapter -1 - Vector Algebra from NCERT MATHEMATICS PART II Textbook for Class XII Solutions

1. Vectors as the sides of a triangle:

If a,b,c are the vectors represented by the sides of a triangle taken in order, then a+b+c=0. Conversely, if a,b,c are three non-collinear vectors, such that a+b+c=0, then they form the sides of a triangle taken in order.

2. Types of vectors:

(i) Co-linear vectors:

Two non-zero vectors a and b are collinear if there exist non-zero scalars x and y such that  xa+yb=0.

(ii) Non-colinear vectors:

If a and b are two non-zero non-collinear vectors, then xa+yb=0x=y=0.

(iii) Co-planar vectors:

If a and b are two non-zero vectors, then any vector r coplanar with a and b can be uniquely expressed as r=xa+yb, where x, y are scalars.

Also, r =x|a| a^ + y|b| b^

(iv) Representation of a vector r in terms of three given non-coplanar vectors:

If a,b,c are three given non-coplanar vectors, then every vector r in space can be uniquely expressed as r=xa+yb+zc for some scalars x, y and z.

3. Linearly dependent and independent vectors: 

(i) A set of non-zero vectors a1,a2,a3,,an are linearly independent, if x1a1+x2a2+.+xnan=0x1=x2=......=xn=0

(ii) A set of vectors a1,a2,a3,,an are linearly dependent, if there exist scalars x1,x2,,xn not all zero such that  x1a1+x2a2+  .  +xnan=0. 

(iii) Any two non-zero, non-collinear vectors are linearly independent.

(iv) Any two collinear vectors are linearly dependent.

(v) Any three non-coplanar vectors are linearly independent.

(vi) Any three coplanar vectors are linearly dependent.

4. Section formula:

(i) If A and B are two points with position vectors a and b respectively, then the position vector of a point C dividing AB in the ratio m:n internally and externally are mb+nam+n and mb-nam-nrespectively.

(ii) If A and B are two points with position vectors a and b respectively and m, n are positive real numbers, then  mOA+nOB=m+nOC, where C is a point on AB dividing it in the ratio n:m.

(iii) Centroid of a triangle:

If S is any point in the plane of a triangle ABC, then SA+SB+SC=3SG, where G is the centroid of ABC

5. Condition for collinearity:

The necessary and sufficient condition for three points with position vectors a,b,c to be collinear is that there exist scalars x, y, z not all zero such that xa+yb+zc=0, where x+y+z=0.

6. Condition for points to be co-planar:

The necessary and sufficient condition for four points with position vectors a,b,c,d to be coplanar is that there exist scalars x, y, z, t not all zero such that xa+yb+zc+td=0, where x+y+z+t=0.

7. Dot product of two vectors:

If a and bare two non-zero vectors inclined at an angle θ, then

(i) a·b=abcosθ

(ii) Projection of a on b=a·b|b|=a·b^

(iii) Projection of bon a=a·b|a|=b·a^

(iv) Projection vector of aon b=a·b|b|b^=a·b|b|2b

(v) Projection vector of bon a =a·b|a|a^=a·b|a|2a

(vi) a·b=0a is perpendicular to b

(vii) a·b=b·a

(viii) a·a=|a|2

(ix) ma·b=m (a·b)=a·mb, for any scalar m

(x) ma·nb=mn(a·b)=mn(a·b)=a·mnb for scalars m, n

(xi) |a±b||a|+|b|

(xii) |a-b||a|-|b|

(xiii) |a ± b|2=|a|2 +|b|2 ± 2(a·b)

(xiv) (a+b)·(a-b)=|a|2-|b|2

(xv) a·b>0 if θ is acute

(xvi) a·b<0 if θ is obtuse

(xvii) Dot product in component form: 

If a=a1i^+a2j^+a3k^ and b=b1i^+b2j^+b3k^, then a·b=a1b1+a2b2+a3b3.

8. Angle between two vectors:

If a and b are two vectors inclined at an angle θ, then cosθ=a·b|a||b|.

9. Scalar Triple Product:

(i) Properties of scalar triple product:

(a) The dot Product of the vector a × bwith the vector c is scalar triple product of three vectors a, b, c and it is written as a×b·c it is a scalar quantity.

(b) a×b·c=a·b×c i.e. dot and cross can be interchanged in a scalar triple product  is written as a b c.

(c) a b c=b c a=c a b=-b a c=-c b a=-a c b

(d) If a=a1,a2,a3=a1i^+a2j^+a3k^, b=b1,b2,b3=b1i^+b2j^+b3k^ and c=c1,c2,c3=c1i^+c2j^+c3k^, then a b c=a1a2a3b1b2b3c1c2c3

(ii) The volume of the Parallelepiped:

(a) with a,b,c as Coterminous edges = a b c

(b) with A,B,C,D as vertices of coterminous edges is AB AC AD cubic units.

10. Cross product of two vectors:

(i) If a,b are two vectors inclined at an angle θ, then a×b=|a||b|sinθn^, where n^ is a unit vector perpendicular to the plane of a and bsuch that a,b,n^ form a right handed system.

(ii) a×b=0 if a and bare parallel.

(iii) Area of a parallelogram:

a×b gives the vector area of the parallelogram having two adjacent sides as a and b.

(iv) For any two co-planar vectors a and ba×b=-(b×a)

(vi) ma × nb=mn(a×b)=na×mb=mna×b=a×mnb for scalars m, n.

11. Cross product in component form:

a×b=i^j^k^a1a2a3b1b2b3, where a=a1i^+a2j^+a3k^ and b=b1i^+b2j^+b3k^

12. Area of plane figures: 

(i) Area of a triangle:

Area of ABC =12AB×AC=12BC×BA=12CB×CA

(ii) Area of a quadrilateral:

Area of a plane convex quadrilateral ABCD is 12AC×BD, where AC and BD are diagonal.

(iii) Area of a triangle when the vertices are given:

If a, b, c are the position vectors of the vertices A, B, C of ABC, then

Area of ABC=12a×b+b×c+c×a