HARD
12th CBSE
IMPORTANT
Earn 100

Find a unit vector perpendicular to each of the vectors a+b and a-b, where a=3i^+2j^+2k^ and b=i^+2j^-2k^.

Important Questions on Vector or Cross Product

HARD
12th CBSE
IMPORTANT
The area of the triangle with vertices, A(2,3,5), B(3,5,8) and C(2,7,8) is k2 square units.
HARD
12th CBSE
IMPORTANT
If a=2i^-3j^+k^,b=-i^+k^,c=2j^-k^ are three vectors, if the area of the parallelogram isk2 sq. units having diagonals a+b and b+c then find the value of k.
HARD
12th CBSE
IMPORTANT
The two adjacent sides of a parallelogram are 2i^-4j^+5k^ and i^-2j^-3k^. Find the unit vector parallel to one of its diagonals. If its area is 11k square units. Then the value of k is
MEDIUM
12th CBSE
IMPORTANT
If either a=0 or b=0, then a×b=0. Is the converse true? Justify your answer with an example.
HARD
12th CBSE
IMPORTANT
If a=a1i^+a2j^+a3k^,b=b1i^+b2j^+b3k^ and c=c1i^+c2j^+c3k^, then verify that a×(b+c)=a×b+a×c
HARD
12th CBSE
IMPORTANT

If the area of the triangle with vertices: A(1,1,2), B(2,3,5) and C(1,5,5) is k2 square units. Find the value of k.

HARD
12th CBSE
IMPORTANT

The area of the triangle with vertices: A(1,2,3), B(2,-1,4) and C(4,5,-1) is k2. Find the value of k.

MEDIUM
12th CBSE
IMPORTANT

Find all vectors of magnitude 103 that are perpendicular to the plane of i^+2j^+k^ and -i^+3j^+4k^.