MEDIUM
Earn 100

Find number of possible triplets α, β, γ, if A=0αα2ββ-βγ-γγ is an orthogonal matrix.

100% studentsanswered this correctly

Important Questions on Matrices and Determinants

HARD
Let P1=I=100010001, P2=100001010, P3=010100001P4=010001100, P5=001100010,P6=001010100, and
X=k=16PK213102321PKT
where PKT denotes the transpose of the matrix PK. Then which of the following options is/are correct?
HARD
For two 3×3 matrices A and B, let A+B=2B' and 3A+2B=I3, where B is the transpose of B and I3 is 3×3 identity matrix. Then :
EASY
The number of all 3×3 matrices A, with entries from the set -1,0,1 such that the sum of the diagonal elements of AAT is 3, is ___________.
MEDIUM
If P=abcbcacababc=1PTP=I then the value of a3+b3+c3 is
MEDIUM
Let A=xyzyzxzxy, where x, y and z are real numbers such that x+y+z>0 and xyz=2. If A2=I3, then the value of x3+y3+z3 is
EASY
If 3A+4B'=7-10170631 and 2B-3A'=-11840-5-7 then B=
MEDIUM
If A=5a-b32 and A.adjA=A AT , then 5a+b is equal to 
EASY
Let P=100310931 and Q=qij be two 3×3  matrices such that Q-P5=I3. Then q21+q31q32 is equal to :
MEDIUM

If A=12221-2a2b is a matrix satisfying the equation AAT=9I , where I is 3×3 identity matrix, then the ordered pair a, b is equal to 

HARD
If A is a 3×3 non-singular matrix such that AA'=A'A and B=A-1A', then BB' equals, where X' denotes the transpose of the matrix X.
MEDIUM
Let A,B,C,D be square real matrices such that CT=DAB, DT=ABC, S=ABCD, then S2 is equal to
EASY
 If A=cosαsinα-sinαcosα , then verify that A'A=I
HARD
The total number of matrices A=02y12xy-12x-y1, x, yR, xy for which ATA=3I3 is:
HARD
Let P=1004101641 and I be the identity matrix of order 3. If Q=qij is a matrix such that P50-Q=I, then the value of q31+q32q21 is equal to
MEDIUM
Let A=100110111 and B=A20. Then the sum of the elements of the first column of B is
MEDIUM
If A=01  -10 , then which one of the following statements is not correct?
EASY
If the matrix 235-1=A+B, where A is symmetric and B is skew-symmetric then B is equal to
MEDIUM
If 0   2β      γα    β   γα β      γ is orthogonal, then the values of α, β and γ will be
MEDIUM
If A=pqrrpqqrp and AAT=I, then p3+q3+r3=