HARD
Earn 100

If the volume of parallelepiped determined by vectors (2a¯×b¯), (b¯×3c¯) and 5(c¯×a¯) is equal to the volume of the parallelepiped determined by vectors 5(a¯+b¯), 6(b¯+c¯) and 2(c¯+a¯), then find the volume of parallelepiped determined by vectors a¯, b¯ and c¯ in cubic units.

50% studentsanswered this correctly

Important Questions on Vectors

MEDIUM
If a= i^-j^+k^,b=2i^+3j^+2k^ and c=i^+mj^+nk^ are three coplanar vectors and c=6, then which one of the following is correct?
MEDIUM
Let x0 be the point of local maxima of  fx=a·b×c, wherea=xi^-2j^+3k^,  b=-2i^+xj^-k^ and c=7i^-2j^+xk^. Then the value of a·b+b·c+c·a at x=x0 is:
HARD
If the volume of a parallelepiped whose coterminous edges are a=i^+j^+2k^, b=2i^+λj^+k^ and c=2i^+2j^+λk^ is 35 cu.m, then a value of a·b+b·c-c·a is
EASY
If the vectors 2i^-3j^+4k^, 2i^+j^-k^ and λi^-j^+2k^ are coplanar, then the value of λ is
HARD
If the volume of parallelepiped formed by the vectors i^+λj^+k^,j^+λk^ and λi^+k^ is minimum, then λ is equal to:
HARD
If a, b and c be three non-coplanar vectors and p, q, and r be defined by p=b×ca·b×c, q=c×ab·c×a, r=a×bc¯·a×b such that
HARD
If the volume of a parallelopiped, whose coterminous edges are given by the vectors a=i^+j^+nk^ ,  b=2i^+ 4j^- nk^ and,c=i^+nj^+3k^ (n0) is 158 cubic units, then :
MEDIUM
If V=2i^+j^-k^, W=i^+3k^ and U is a unit vector, then the maximum value of UVW is
HARD
If A, BC and D are 3, 7, 4,5,-2,-3,-4, 5, 6 and 1, 2, 3 respectively, then the volume of the parallelepiped with ABAC and AD as the coterminous edges, is ….cubic units.
MEDIUM
Let the volume of a parallelepiped whose coterminous edges are given by u=i^+j^+λk^, v=i^+j^+3k^ and w=2i^+j^+k^, be 1 cu. unit. If θ be the angle between the edges u and w, then the value of cosθ can be
MEDIUM
If abc=4, then the volume of the parallelopiped with coterminus edges a+2b, b+2c, c+2a is
HARD
If a×b  b  →×c  c  →×a=λ a→   b →   c →2 then λ is equal to 
MEDIUM
The volume of a tetrahedron whose vertices are 4i^+5j^+k^, -j^+k^, 3i^+9j^+4k^ and -2i^+4j+4k^ is (in cubic units)
MEDIUM
If h is the altitude of a parallelopiped determined by the vectors a^, b^, c^ and the base is taken to be the parallelogram determined by a^ and b^ where a^=i^+j^+k^, b^=2i^+4j^-k^ and c^=i^+j^+3k^, then the value of 19h2 is
MEDIUM
If a=1103ı^+k^, b=172ı^+3ȷ^-6k^, then the value of 2a-b·a×b×(a+2b is
EASY
If the vectors a=ı^-2j^+k^b=2ı^-5j^+pk^ and c=5i-9j^+4k^ are coplanar, then the value of p is
EASY
Consider the vectors A=i^+j^-k^B=2i^-j^+k^ and C=15i^-2j^+2k^. What is the value of C·A×B?
MEDIUM
a+2b-c    a-b    a-b-c
EASY
If the vectors, p=a+1i^+aj^+ak^,q=ai^+a+1j^+ak^ and r=ai^+aj^+a+1k^aR are coplanar and 3p·q2-λr×q2=0, then the value of λ is ________
HARD
Let u^=u1i^+u2j^+u3k^ be a unit vector in R3 and w^=16 i^+ j^+2k^. Given that there exists a vector v in R3 such that u^×v=1 and w^ . u^×v=1. Which of the following statement(s) is (are) correct ?