Scan to download the App
E M B I B E
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
Share
HARD
Earn 100
Let
d
d
x
F
x
=
e
sin
x
x
,
x
>
0
. If
∫
1
4
3
x
e
sin
x
3
d
x
=
F
k
-
F
1
, then one of the possible values of
k
is
(a)
16
(b)
63
(c)
64
(d)
15
100% students
answered this correctly
Check
Important Questions on Integrals
MEDIUM
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
If
∫
f
(
x
)
d
x
=
ψ
(
x
)
, then
∫
x
5
f
(
x
3
)
d
x
, is equal to
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
If
∫
x
5
e
-
4
x
3
d
x
=
1
48
e
-
4
x
3
f
x
+
C
, where
C
is a constant of integration, then
f
x
is equal to
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
The integral
∫
3
x
13
+
2
x
11
2
x
4
+
3
x
2
+
1
4
d
x
, is equal to
MEDIUM
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
The number of continuous functions
f
:
0
,
1
→
R
that satisfy
∫
0
1
x
f
x
d
x
=
1
3
+
1
4
∫
0
1
f
x
2
d
x
is
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
For,
x
2
≠
n
π
+
1
,
n
∈
N
(the set of natural numbers), the integral
∫
x
2
sin
x
2
-
1
-
sin
2
x
2
-
1
2
sin
x
2
-
1
+
sin
2
x
2
-
1
d
x
, is equal to
(where
c
is a constant of integration).
MEDIUM
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
The integral
∫
d
x
x
+
1
3
4
x
-
2
5
4
, is equal to
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
The value of
∫
-
π
/
2
π
/
2
d
x
x
+
sin
x
+
4
,
where
t
denotes the greatest integer less than or equal to
t
,
is
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
If
∫
tan
x
1
+
tan
x
+
tan
2
x
d
x
=
x
-
K
A
tan
-
1
K
tan
x
+
1
A
+
C
, (
C
is a constant of integration), then the ordered pair
K
,
A
is equal to
MEDIUM
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
The integral
∫
d
x
x
2
x
4
+
1
3
4
equals to
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
Let,
n
≥
2
be a natural number and
0
<
θ
<
π
2
.
Then
∫
s
i
n
n
θ
-
s
i
n
θ
1
n
c
o
s
θ
s
i
n
n
+
1
θ
d
θ
,
is equal to
MEDIUM
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
The number of continuous function
f
:
0,1
→
0,1
such that
f
(
x
)
<
x
2
for all
x
and
∫
0
1
f
(
x
)
d
x
=
1
3
is:
EASY
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
∫
0
π
4
x
.
sec
2
x
d
x
=
EASY
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
The integral
∫
π
4
3
π
4
d
x
1
+
cos
x
is equal to
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
If
∫
log
t
+
1
+
t
2
1
+
t
2
d
t
=
1
2
g
t
2
+
c
, where
c
is a constant, then
g
2
, is equal to
MEDIUM
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
Let,
I
n
=
∫
tan
n
x
d
x
n
>
1
. If
I
4
+
I
6
=
a
tan
5
x
+
b
x
5
+
c
, then the ordered pair
a
,
b
, is equal to
EASY
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
The value of
∫
0
2
d
x
x
2
-
2
x
+
2
is equal to
MEDIUM
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
∫
sec
8
x
cosec
x
d
x
=
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
If
f
x
=
∫
5
x
8
+
7
x
6
x
2
+
1
+
2
x
7
2
d
x
,
x
≥
0
,
and
f
0
=
0
,
then the value of
f
(
1
)
is
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
If
∫
0
k
d
x
2
+
18
x
2
=
π
24
, then the value of
k
is
HARD
Mathematics
>
Integral Calculus
>
Integrals
>
Definite Integration
If
f
x
-
4
x
+
2
=
2
x
+
1
,
x
∈
R
-
1
,
-
2
, then
∫
f
x
d
x
is equal to