HARD
Earn 100

Let f be a continuous & even function such that 0af(x) dx=10. If g(x)  is a continuous positive function such that g(x) g(-x)=1 and 0ag(x) dx=5 then find the value of -aaf(x)1+g(x)dx.

50% studentsanswered this correctly

Important Questions on Definite Integration

EASY
Let f and g be continuous functions on 0,a such that fx=fa-x and gx+ga-x=4, then 0afxgxdx is equal to
EASY
03xdx=______, where x is greatest integer function
EASY
If 1 4 f( x )dx=4 and 2 4 ( 3f( x ) )dx=7 , then 1 2 f( x )dx is
MEDIUM
The value of -π2π2x2cosx1+ex dx is equal to
HARD
The integral 0π1+sin2x2-sinx2dx equals 
HARD
Let x>0 be a fixed real number. Then the integral 0e-1x-tdt is equal to-
HARD
For a real number x let x denote the largest integer less than or equal to x and x-x-x . The smallest possible integer value of n for which 1nxxdx exceeds 2013 is
HARD
Let fx=max3, x2,1x2 for 12x2. Then the value of the integral 122fxdx is
MEDIUM
The value of the integral -ππcos2x1+axdx, a>0 is
HARD
If px is a cubic polynomial with p1=3, p0=2 and p-1=4, then -11pxdx is-
MEDIUM

Statement - I : The value of the integral π/6π/3dx1+tan x is equal to π6.

Statement - II : abfxdx=abfa+b-xdx.

HARD
Define a function f :RR by fx=maxx, x-1,.,x-2n, where n is a fixed natural number. Then 02nfxdx is-
HARD
For a real number x, let x denote the largest integer less than or equal to x and x=x-x. Let n be a positive integer. Then 0ncos 2πxxdx is equal to
HARD
For real x with -10x10 define fx=-10x2tdt , where for a real number r we denote by r the largest integer less than or equal to r . The numbers of points of discontinuity of f in the interval -10, 10 is
HARD
For a real number x let x denote the largest integer less than or equal to x. The smallest positive integer n for which the integral 1nxxdx exceeds 60 is-
HARD
Let n be a positive integer. For a real number x, let x denote the largest integer not exceeding x and x=x-x. Then 1n+1xxxdx is equal to
MEDIUM
If 0π2 logcosx dx=π2log12, then 0π2 logsecx dx=
HARD
Let f:RR be a function such that f2-x=f2+x and f4-x=f4+x, for all xR and 02fxdx=5. Then the value of 1050fxdx is
MEDIUM
The integral 24logx2logx2+log6-x2dx is equal to