HARD
Earn 100

Statement 1: The probability that y=16x2+8(a+5)x-7a-5 defined in -26, 0 is strictly above the x-axis is 12.

Statement 2: If the graph of y=ax2+bx+c is strictly above the x-axis, then discriminant is negative and a>0.

50% studentsanswered this correctly

Important Questions on Algebraic Inequalities

HARD
If β satisfies the equation x2-x-6>0, then a value exists for
MEDIUM
If 5, 5r, 5r2 are the lengths of the sides of a triangle, then r can not be equal to:
HARD
Find the number of ordered triples a,b,c of positive integers such that 30a+50b+70c343.
HARD
The number of integral values of m for which the quadratic expression 1+2m x2-21+3mx+41+m, xR is always positive, is
HARD
Determine the sum of all possible positive integers n, the product of whose digits equals n2-15n-27. 
EASY
If x2-5x-14>0x lie outside [α, β], then αβ=
EASY
For 0p1 and for any positive a, b ; let I(p)=(a+b)p, J(p)=ap+bp, then
MEDIUM
The values of x for which 4x+41-x-5<0, is given by
HARD
The least positive integer n for which n+13-n3<112 is-
EASY
The smallest negative integer satisfying both the quadratic inequalities x2<4x+77 and x2>4 is
MEDIUM
The integer k, for which the inequality x2-23k-1x+8k2-7>0 is valid for every x in R is:
MEDIUM
fx=ax2-bx-a is a quadratic expression. If K is the least real number such that fxK,  xR, then
EASY
If xI (set of all integers) such that x2-3x<4, then the number of possible values of x is
MEDIUM
Let N be the set of positive integers. For all nN, let fn=n+11/3-n1/3 and A=nN:fn+1<13n+12/3<fn
Then,
HARD
If 6x2-5x-3x2-2x+64, then the least and the highest values of 4x2 are
HARD
Let a,b,c,d,e be real numbers such that a+b<c+d, b+c<d+e, c+d<e+a, d+e<a+b. Then