HARD
JEE Advanced
IMPORTANT
Earn 100

The equation 10x43x21=0 has

50% studentsanswered this correctly

Important Points to Remember in Chapter -1 - Definite Integral from Amit M Agarwal Skills in Mathematics for JEE MAIN & ADVANCED INTEGRAL CALCULUS Solutions

1. Basics of Definite Integrals:

The fundamental theorem of calculus:

If f is continuous on a,b, then abfxdx=Fb-Fa, where F'=f.

Note:

If abfxdx=0 fx=0 has at least one root lying on a,b, provided f is a continuous function on a,b.

2. Properties of Definite Integral:

(i) abfxdx =abftdt.

(ii) abfxdx=-bafxdx.

(iii) abfxdx=acfxdx+cbfxdx.

(iv) -aafxdx=0afx+f-xdx=0; if fx is an odd function, i.e., f-x=-fx.

(v) -aafxdx=0afx+f-xdx=20afxdx; if fx is an even function, i.e., f-x=fx.

(vi) abfxdx=abfa+b-xdx, in particular 0afxdx=0afa-xdx.

(vii) 02afxdx=0afxdx+0af2a-xdx=20afxdx; if  f2a-x=fx

(viii) 02afxdx=0afxdx+0af2a-xdx=0; if  f2a-x=-fx.

(ix) 0nTfxdx=n0Tfxdx, nZ; where T is the period of the function, i.e., fT+x=fx.

(x) a+nTb+nTfxdx=abfxdx, where fx is periodic with period T & nZ.

(xi) mTnTfxdx=n-m0Tfxdx,n,mZ, if fx is periodic with period T.

3. Definite Integral as Limit of a Sum:

abfxdx=limnhfa+fa+h+fa+2h++fa+(n-1)h_= limh0hΣr=0n-1f(a+rh), where b-a=nh

If a=0 & b=1, then, limnhΣr=0n-1frh=limn1n Σr=1n-1frn=01fxdx; where nh=1

4. Derivative of Antiderivative Function (Newton-Leibnitz’s Formula):

If hx &gx are differentiable functions of x, then  ddxgxhxftdt=fhxh'x-fgx·g'(x).

5. Reduction and Walli’s Formula:

(i) 0π2sinnxdx=0π2cosnxdx=n-1n-31 or 2nn-21 or 2K,

where K=π2 , if  n is even;

and K=1 ,if  n is odd.

(ii) 0π2sinnx·cosmxdx=n-1n-3n-5.1 or 2m-1m-3.1 or 2m+nm+n-2m+n-41 or 2K,

where K=π2 , if both m and n are even;

and K=1, otherwise.

6. Estimation of Definite Integral:

(i) If fx is continuous on a,b and its range on this interval is m,M, then mb-aabfxdxMb-a.

(ii) If fxϕx for axb, then abfxdxabϕxdx.

(iii) abfxdxabfxdx.

(iv) If fx0 on the interval a,b, then abfxdx0.

(v) fx and gx are two continuous function on a,b, then abfxgxdxabf2xdxabg2xdx.

(vi) Trapezoidal approximation:

Let fx be a continuous function on the interval a, b. Dividing the interval a, b into n equal subintervals, each of width Δx=b-an such that a=x0<x1<x2<x3xn=b, then abfxdx I = Δxfx0+2fx1+2fx2+......+2fxn-1+xn2.

(vii) Simpson’s approximation rule:

Let fx be a continuous function on a, b, then abfxdxb-a6fa+4fb+a2+fb.

7. Length of Arc:

Length of the arc of y=fx from x=a to x=b is ab1+dydx2dx