EASY
7th CBSE
IMPORTANT
Earn 100

The figure is made up of two identical rectangles. Find the area of the shaded part:

Question Image

50% studentsanswered this correctly

Important Points to Remember in Chapter -1 - Perimeter and Area from Subject Experts Foundation Course Mathematics Solutions

1. Units of Area:

(i) A square centimetre is the area of the region formed by a square of side 1 cm.

(ii) Standard units of area and their relations are:

(a) 100 mm2=1 cm2,100 cm2=1 dm2
(b) 100 dm2=1 m2,10000 cm2=1 m2
(c) 100 m2=1 are,100 ares=1 hectare
(d) 10 hectares=1 sq.km

2. Perimeter and Area of a Rectangle and a Square:

(i) Perimeter of a rectangle =2Length+Breadth or P=2l+b.

(ii) Perimeter of a square =4Side or P=4I.

(iii) Area of a rectangle = Length× Breadth or A=I×b.

(iv) Length of a rectangle =AreaBreadth or l=Ab.

(v) Breadth of a rectangle =AreaLength or b=Al.

(vi) Area of a square =Side2 or A=l×l.

3. Parallelogram:

(i) Area of a parallelogram =Base×Height or A=b×h.

(ii) Base of parallelogram =Areaheight or b=Ah.

(iii) Height of a parallelogram =Areabase or h=Ab.

4. Triangle:

(i) Area of a triangle =12×Base×Height or A=12×b×h.

(ii) Height of a triangle =2×AreaBase or h=2Ab.

(iii) Base of a triangle =2×Areaheight or b=2Ah.

5. Rhombus:

Area of a rhombus =12× (Product of diagonals)

6. Trapezium:

Area of trapezium =12× (Sum of the parallel sides) × (perpendicular distance between the parallel sides)

7. Perimeter and Area of Circle:

(i) The perimeter of a circle is called its circumference.

(ii) The ratio of the circumference of a circle to its diameter is the same for all circles, regardless of their sizes. The constant ratio is denoted by π whose approximate value is 227 or 3.14.i.e.CircunferenceDiameter=π

C2r=π, where C is the circumference of the circle and r is the radius of the circle

C=2πr.

(iii) The number π is not a rational number.

(iv) Circumference C of a circle of radius r is given by C=2πr. Or, C=πd, where d=2r= Diameter.

(v) Area A of a circle of radius r is given by A=πr2.

(vi) Radius of a circle =Aπ.