EASY
Earn 100

The limit limn1n2020k=1nk2019

50% studentsanswered this correctly

Important Questions on Definite Integrals

MEDIUM
The value of limn1nsec2π4n+sec22π4n++sec2nπ4n is
HARD
limnnn2+12+nn2+22+nn2+32+.. .+15n is equal to
HARD
limn3n1+nn+3+nn+6+nn+9++nn+3(n-1)
HARD
limn1n+nn+12+nn+22++n2n-12 is equal to
HARD
limn(n+1)1/3n4/3+(n+2)1/3n4/3+.....+(2n)1/3n4/3 is equal to
HARD
Suppose the limit L=limnn0111+x2ndx exists and is larger than 12. Then,
MEDIUM

The value of limn1nr=02n-1n2n2+4r2 is:

MEDIUM
The value of limnr=1n1+r2n22rn2 is equal to
MEDIUM

Let f:0,2R be defined as fx=log21+tanπx4.

Then, limn2nf1n+f2n+.+f1 is equal to ________.

HARD
If limn1a+2a++nan+1a-1na+1+na+2++na+n=160  for some positive real number a, then a is equal to
EASY
If f:RR is given by f(x)=x+1, then the value of limn1nf0+f5n+f10n+..+f5(n-1)n is:
EASY
Let f be a continuous function in [0,1] , then limn j=0n1nfjn is
EASY
The value of limn1nj=1n2j-1+8n2j-1+4n is equal to:
HARD
limn1nlog(2n)!nn·n!=12fxdx, then fx=
HARD
If Un=1+1n21+22n221+n2n2n, then limnUn-4n2 is equal to
HARD
If a and b are positive integers such that b>a, then limn1na+1na+1+1na+2++1nb=
HARD
limnn+1 n+2.3nn2n1n is equal to
HARD
For each positive integer n, let yn=1n((n+1)(n+2)...(n+n))1n. If limnyn=L, then the value of L (where x is the greatest integer less than or equal to x) is ____