MEDIUM
Earn 100

The number of vectors of unit length perpendicular to the two vectors

a=1,1,0 and b=(0,1,1) is

50% studentsanswered this correctly

Important Questions on Vector Algebra

EASY
The values of α such that |αi^+(α+1)j^+2k^|=3, are
EASY
Let αR and the three vectors a=αi^+j^+3k^,  b=2i^+j^-αk^ and c=αi^-2j^+3k^. Then the set S = {α:a,b and c are coplanar}
EASY
The direction cosines of the vector i^-5j^+8k^ are
MEDIUM
If PQRST is a pentagon, then the resultant of forces PQ, PT, QR, SR, TS and PS is
EASY
The sum of the distinct real values of μ for which the vectors μi^+j^+k^, i^+μj^+k^, i^+j^+μk^ are co-planar, is 
HARD
If a,b,c are non-coplaner vectors such that b×c=a; c×a=b; a×b=c, then which of the following is not TRUE?
EASY
If the vectors xi^-3j^+7k^ and i^+yj^-zk^ are collinear then the value of xy2z is equal
MEDIUM
If the vectors α=i^+aj^+a2k^, β=i^+bj^+b2k^ and γ=i^+cj^+c2k^ are three non-coplanar vectors and aa21+a3bb21+b3cc21+c3=0, then the value of abc is
HARD
Let S be the set of all real values of λ such that a plane passing through the points -λ2, 1, 1, 1, -λ2, 1 and 1, 1, -λ2 also passes through the point -1, -1, 1. Then S is equal to :
MEDIUM
Let A,B,C,D be the points with position vectors 3i^-2j^-k^,2i^+3j^-4k^,-i^+2j^+2k^ and 4i^+5j^+λk^ respectively. If the points A,B,C,D lie on a plane, then the value of λ is
MEDIUM
Number of unit vectors of the form ai^+bj^+ck^, where a, b, cW is
MEDIUM
If vectors ai^+j^+k^, i^+bj^+k^ and i^+j^+ck^ abc1 are coplanar, then 11-a+11-b+11-c is equal to
MEDIUM
The vector that is parallel to the vector 2i^-2j^-4k^ and coplanar with the vectors i^+j^ and j^+k^ is
MEDIUM

The position vector of A and B are 2i^+2j^+k^ and 2i^+4j^+4k^. The length of the internal bisector of BOA of triangle AOB is

EASY
The value of m, if the vectors i^-j^-6k^, i^-3j^+4k^ and 2i^-5j^+mk^ are coplanar, is
HARD
The unit vector which is orthogonal to the vector i^+j^+k^ and is coplanar with vectors i^+2j^-k^ and 2i^+j^+3k^, is
HARD
The position vectors of the points A, B, C and D are 3i^-2j^-k^, 2i^-3j^+2k^, 5i^-j^+2k^ and 4i^-j^+λk^, respectively. If the points A, B, C and D lie on a plane, the value of λ is
EASY
If a=i^+j^+k^, b=i^-j^+2k^ and c=xi^+x-2j^-k^ and if the vector c lies in the plane of vectors a and b, then x equals
EASY
A unit vector is represented as (0.8i^+bj^+0.4k^). Hence the value of b must be
EASY
If a is a nonzero vector of magnitude a  and λ a nonzero scalar then λa is unit vector if