HARD
11th Tamil Nadu Board
IMPORTANT
Earn 100

The skewness and kurtosis of a binomial distribution are 16 and -1136 respectively. Find the Binomial distribution.

Important Points to Remember in Chapter -1 - Probability Distributions from Tamil Nadu Board Statistics Standard 11 Solutions

1. Discrete distribution:

(i) Bernoulli's Distribution:

(a) Probability mass function of Bernoulli distribution is given by   P(X=x)=pxq1xx=0,10otherwise where q=1-p.

(b) Here, mean=p, variance=pq and standard deviation=pq.

(ii) Binomial Distribution:

(a) A random variable X denoting the number of successes in an outcome of a Binomial experiment having n trials and p as the probability of success in each trial is called Binomial random variable. Its probability mass function is given by

P(X=x)={Cxnpxqnxfor x=0,1,2,n0otherwise where q=1-p and n,p are its parameters.

(b) Here, mean=np, variance=npq, standard deviation=npq , skewness=q-pnpq and kurtosis=1-6pqnpq.

(iii) Poisson Distribution:

(a) A random variable X is said to follow a Poisson distribution if it assumes only non-negative integral values and its probability mass function is given by

P(X=x)=eλλxx!x=0,1,2,0otherwiseλ is the parameter of the Poisson distribution.

(b) Here, mean =λ=variance, standard deviation =λ, skewness =1λ and kurtosis =1λ.

2. Continuous Distribution:

(i) Regular or Uniform distribution:

(a) A random variable X is said to have a continuous Uniform distribution over the interval (a,b) if its probability density function is 

f(x)=1baa<x<b0otherwisea and b are the parameters of uniform distribution.

(b) Here, mean μ=a+b2, variance σ2=(b-a)212, median=a+b2, skewness=0 and kurtosis=-65.

(ii) Normal Distribution: 

(a) A random variable X is said to have a Normal distribution with parameters μ (mean) and σ2(variance) if its probability density function is given by fx=1σ2π  e12{xμσ}2 where <x<,<μ< and σ>0. It is denoted by X~N(μ,σ2).

(b) Mean = Mode = Median =μ, model height =1σ2π, skewness β1=0 and kurtosis β2=3.

(c) Properties of Normal distribution: 

  • P(<X<)=1
  • P(μσ<X<μ+σ)=0.6826
  • P(μ2σ<X<μ+2σ)=0.9544
  • P(μ3σ<X<μ+3σ)=0.9973