Amplitude of a Complex Number

IMPORTANT

Amplitude of a Complex Number: Overview

In this topic, we will discuss the amplitude of a given complex number. We will also study the methods on how to find it and go through some solved examples to learn to find the amplitude of a given number.

Important Questions on Amplitude of a Complex Number

EASY
IMPORTANT

If argz<0, then argzargz=

EASY
IMPORTANT

Find the argument of a conjugate of a complex number z=3+2i.

EASY
IMPORTANT

A complex number z=1+i3.

The general argument of z is

EASY
IMPORTANT

A complex number z=3+i.

The general argument of z is 2nπ+π6, where n is an integer.

EASY
IMPORTANT

A complex number z=1-i.

The argument of z¯ is

EASY
IMPORTANT

A complex number z=3+9i.

Find the argument of z¯.

MEDIUM
IMPORTANT

The locus of a point P(z) satisfying |z+3|+|z 3|=10 is (where z is a complex number)

MEDIUM
IMPORTANT

The modulus-amplitude form of (1-i)3(2-i)(2+i)(1+i) is

EASY
IMPORTANT

Statement I  Both z1 and z2 are purely real , if  arg (z1 z2) = 2π  (z1 and z2 have principle arguments).
Statement II Principle arguments of complex number lies between (-π, π].

MEDIUM
IMPORTANT

Let z= (23+2i)8(1-i)6+(1+i)6(23-2i)8. Let θ be the argument of z such that θ∈ (– π,π] then 4 sinθ is equal to

MEDIUM
IMPORTANT

If pqrqrprpq=0, where p, q, r all the moduli of non-zero complex numbers z1, z2, z3, then prove that arg z3z2=λ arg z3-z1z2-z1 find λ

MEDIUM
IMPORTANT

Consider a square OABC in argand plane, where O is origin and A be complex number z0. Then the equation of the circle that can be inscribed in this square is (Vertices of square are given in anticlockwise order and i=-1)

EASY
IMPORTANT

The argument of 1+i33+1 is equal to

HARD
IMPORTANT

If z-25i15 , then |Maximum arg(z)-Minimum arg(z)| equals -

HARD
IMPORTANT

If P and Q are represented by the complex numbers z1 and z2, such that 1z2+1z1= 1z2-1z1, then the circumcenter of ΔOPQ (where O is the origin) is

HARD
IMPORTANT

If argz¯1=argz2, z0 then

HARD
IMPORTANT

If z1 & z2 satisfy z+z¯=2z-1 and argz1-z2=π4, then Imz1+z2=

HARD
IMPORTANT

If xr=cosπ2r+isinπ2r, zt=cosπ3t+isinπ3tr=1, 2, 3, ., t=1, 2, 3, .  The value of x1x2x3.. 2z1z2z34 -

HARD
IMPORTANT

If 3-z12-z12-z23-z2=k , then points Az1, Bz2, C3, 0 and D2, 0 taken clockwise -

HARD
IMPORTANT

If 3-z12-z12-z23-z2=k , then points Az1, Bz2, C3, 0 and D 2, 0 (taken in clockwise sense) will