Binary Operations

IMPORTANT

Binary Operations: Overview

This topic covers concepts, such as Commutative Property of Binary Operations, Operation Table (Composition Table), Associative Property of Binary Operations, Binary Operations, Existence of Non-zero Divisors for a Binary Operation, etc.

Important Questions on Binary Operations

EASY
IMPORTANT

Let * be a binary operation on N given by   a*b=HCF(a,b),bN.

The value of   22*4 would be:

EASY
IMPORTANT

The binary operation *R×RR, is defined as  a*b=2a+b. From the given options choose the value of  2*3*4 is equal to

EASY
IMPORTANT

Let A be set of all real numbers except -1 and operation * be defined on A as a*b=a+b+ab for all a,bA. 

The value of x in the equation 1*x*3=5 is

EASY
IMPORTANT

Consider a binary operation * on N defined as a*b=1, for all a,bN. Choose the correct answer.

EASY
IMPORTANT

Consider a binary operation * on N defined as a*b=a3+b3. Choose the correct answer

HARD
IMPORTANT

Let * be a binary operation on A=Q×Q, where Q is the set of rational numbers, defined by a,b*c,d=ac,b+ad for a,b,c,dQ×Q,, then the identity element in A, is

EASY
IMPORTANT

Let * be a binary operation on A=N×N, where N is the set of natural numbers, defined by a,b*c,d=a+c,b+d for all a,b,c,dN, then the identity element , if any in A, is

EASY
IMPORTANT

If * be a binary operation on the set R--1 defined by a*b=a+b+ab, then the inverse of element aR--1 is

EASY
IMPORTANT

If  * is a binary operation on Z defined by a*b=a+3b2, then 2*4 is

EASY
IMPORTANT

Let * be a binary operation on the set of non zero rational numbers 0 defined by

a*b=ab4,a,bQ, then inverse of an element aQ' is

EASY
IMPORTANT

Let * be a binary operation on set Q0 (set of non zero rational numbers) defined by a*b=ab4,a,bQ0, then the identity element in Q0 is 

EASY
IMPORTANT

Let * be a binary operation on set R--1 defined by a*b=a+b-ab. Then the identity element for * is 

EASY
IMPORTANT

If A=1,2, the number of binary operations on A having 1 as identity element and 2 as inverse of 2 is

EASY
IMPORTANT

If * be a binary operation on R--1 defined by a*b=ab+1, then the value of 3*2 is

EASY
IMPORTANT

If * be a binary operation on N defined by a*b=2ab, then the value of 1*3 is

EASY
IMPORTANT

If * be a binary operation on N defined by a*b=ab, then the value of 2*3 is

EASY
IMPORTANT

If * be a binary operation defined by a*b=3a+2b-2, then the value of 3*5 is

EASY
IMPORTANT

If a binary operation * is defined on the set Q of rational numbers as a*b=ab3, then the value of 2*3*4 is

EASY
IMPORTANT

If a binary operation * is defined on the set of integers Z as a*b=2a2+b, then the value of 1*2*3 is

EASY
IMPORTANT

Let  be a binary opertation on -0 defined by a b=ab. Then 1234 is equal to