Definite Integration

IMPORTANT

Definite Integration: Overview

This Topic covers sub-topics such as Definite Integral, First Fundamental Theorem of Integral Calculus, Finding Definite Integration Using Substitution Method, Basics of Definite Integrals and, Finding Definite Integral of a Function

Important Questions on Definite Integration

HARD
IMPORTANT

If y=x1xlntdt, then the value of dydx at x=e is

HARD
IMPORTANT

If ϕ x=cosx-0xx-t ϕ tdt. Then find the value of ϕ''x+ϕx.

HARD
IMPORTANT

I=0πx2 sin2xsinπ2cosx2x-π dx

HARD
IMPORTANT

If π4π3sin3θ-cos3θ-cos2θsinθ+cosθ+cos2θ2007sinθ2009cosθ2009dθ=a+bd-1+cdd, where a, b, c  and d are all positive integers. Then the value of (a+b+c+d) is

MEDIUM
IMPORTANT

The value of : 024x2dx would be:

HARD
IMPORTANT

The value of abfxdx=balimn1n[fa+fa+h+...+fa+n1h], where h=banf(x)=x2+x+2; a=0, b=2 as limits of sum would be

MEDIUM
IMPORTANT

The value of 1e37πsin(πnx)xdx is

HARD
IMPORTANT

Let f be a non-negative function defined on the interval [ 0,1 ]. If  0x1(f'(t))2dt=0xf(t)dt,0x1,  and   f(0)=0,  then:

EASY
IMPORTANT

 20{x3+3x2+3x+3+(x+1)cos(x+1)}dx  is equal to:

EASY
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

If f(x) is differentiable and 0t2xf(x)dx=25t5, then f425 equals:

EASY
IMPORTANT

Let   f(x)=x[x],  for every real number x, where [x] is the integral part of x. Then 1 1 f(x) dx is

EASY
IMPORTANT

Let  fx=xx,  for every real number x, where [x] is the integral part of x. Then  11f(x)dx is:

MEDIUM
IMPORTANT

If fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are respectively 

MEDIUM
IMPORTANT

fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are

HARD
IMPORTANT

The value of 0π/4sinx+cosx9+16sin2xdx is

 

HARD
IMPORTANT

The value of limn1n+1+1n+2+...+16n is

HARD
IMPORTANT

limn1n+1+1n+2+...+16n  is equal to

HARD
IMPORTANT

If  sinx1t2f(t)dt=1sinx, then f(13)  is: