Properties of Definite Integrals

IMPORTANT

Properties of Definite Integrals: Overview

This Topic covers sub-topics such as Properties of Definite Integrals, Application of Periodicity in Definite Integral, Property of Even Odd Function in Definite Integral and, Miscellaneous Properties of Definite Integrals

Important Questions on Properties of Definite Integrals

HARD
IMPORTANT

If fx is a function such that fx. f-x=9 x -51,51, then -5151dx3+fx has the value equal to

HARD
IMPORTANT

Find 0 f a x + x a · nx x dx

HARD
IMPORTANT

The value of 0dxx2+2x cosθ+1 is 

MEDIUM
IMPORTANT

For f x = x 4 + x , let I 1 = 0 π f cos x  dx and I 2 = 0 π / 2 f sin x  dx   then I 1 I 2 has the value of equal to

MEDIUM
IMPORTANT

0dx1+xa1+x2; a>0

MEDIUM
IMPORTANT

Find I where I=0p+qπcosxdx where qN and -π2<p<π2.

HARD
IMPORTANT

Let I n = - n n { x + 1 } . { x 2 + 2 } + { x 2 + 2 } { x 3 + 4 } dx, given (nN) where {.} denotes fractional part of x, then I 1 =

HARD
IMPORTANT

I = 0 π ax + b sec x tan x 4 + tan 2 x dx a, b > 0, then I is equal to

MEDIUM
IMPORTANT

The value of  -50fxdx,  where   f( x )=| x |+| x+3 |+| x+6 | would be :

HARD
IMPORTANT

Using properties of definite integrals, evaluate   0π4log(1+tanx)dx.

MEDIUM
IMPORTANT

If 0af(x)dx=0af(ax)dx, then the value of 0π2dx1+tanx is

EASY
IMPORTANT

For n>0, 02πxsin2nxsin2nx+cos2nxdx=

MEDIUM
IMPORTANT

For   n>0, 0 2π x sin 2n x sin 2n x+ cos 2n x dx=

EASY
IMPORTANT

The value of   2 3 x 5x + x dx  is:

HARD
IMPORTANT

The value of   π/4 3π/4 ϕ 1+sinϕ dϕ  is:

MEDIUM
IMPORTANT

The value of  22|1x2|dx  is:

HARD
IMPORTANT

f(x)=| secx cosx sec 2 x+cot xcosec   cos 2 x cos 2 x cosec 2 x 1 cos 2 x cos 2 x |.

Then   0 π/2 f(x)dxequals:

EASY
IMPORTANT

 20{x3+3x2+3x+3+(x+1)cos(x+1)}dx  is equal to:

MEDIUM
IMPORTANT

The integral 1/21/2x+ln1+x1xdx is equal to (where . denotes the greatest integer function)