Angle between a Line and a Plane

IMPORTANT

Angle between a Line and a Plane: Overview

This Topic covers sub-topics such as Angle between a Plane and a Line, Condition for a Line to Lie in a Plane, Angle between Line and a Plane in Vector Form and, Condition when a Line Completely Lies on a Plane

Important Questions on Angle between a Line and a Plane

HARD
IMPORTANT

The angle between the line r=(i^+2ȷ^-k^)+λ(i^-j^+k^) and the plane r·(2i^-ȷ^+k^)=5 is 

MEDIUM
IMPORTANT

The angle between the plane r.i^-2j^+3k^=5 and the line r=i^+j^-k^+λi^-j^+k^ is 

MEDIUM
IMPORTANT

The angle between the line x-13=y+12=z+24 and the plane 2x+y-3z+4=0 is 

MEDIUM
IMPORTANT

The value of k such that the line x-41=y-21=z-k2 lies on the plane 2x-4y+z=7 is

EASY
IMPORTANT

If the line r=(i^-2j^+3k^)+λ(2i^+j^+2k^) is parallel to the plane r·(3i^-2j^+mk^)=10, then value of m is
 

HARD
IMPORTANT

Find the angle between the line r=(i^+2ȷ^-k)+λ(i^-j^+k^) and the plane r2i-j+k=5.

MEDIUM
IMPORTANT

Find the angle between the line x-13=y+12=z+24 and the plane 2x+y-3z+4=0

MEDIUM
IMPORTANT

Find the angle between the planes r.i^-2j^+3k^=5 and the line r=i^+j^-k^+λi^-j^+k^

EASY
IMPORTANT

The angle between the line r=i+j^-k^+λ3i^+j^ and the plane r·ı^+2ȷ^+3k^=8 is

MEDIUM
IMPORTANT

The angle between the line x-12=y+31=z+72 and the plane r·6ı^-2ȷ^-3k^=5 is

MEDIUM
IMPORTANT

The sine of the angle between the straight line x-23=3-y-4=z-45 and the plane 2x-2y+z=5 is

MEDIUM
IMPORTANT

Show that the line of intersection of the planes r·(i^+3j^-2k^)=0 and r2i^+4j^-3k^=0 is equally inclined to i^ & j^. Also find the angle it makes with k^.

MEDIUM
IMPORTANT

Find the value of k. If the  angle between the line r=(i^+2ȷ^-k^)+λ(i^-j^+k^) and the plane r2i^-j^+k^=5 is sin-122k.

MEDIUM
IMPORTANT

Find the angle at which the normal vector to the plane 4x+8y+z=5 is inclined to the coordinate axes.  

MEDIUM
IMPORTANT

If the line r=i^+λ2i^-mj^-3k^ is parallel to the plane r·mi^+3j^+k^=4, then find the value of m.

MEDIUM
IMPORTANT

If the line r=i^-2j^+k^+λ2i^+j^+2k^ is parallel to the plane r·3i^-2j^+mk^=3, then find the value of m.

MEDIUM
IMPORTANT

Find the angle between the line r=2i^+3j^+k^+λi^+2j^-k^ and plane r·2i^-j^+k^=4

MEDIUM
IMPORTANT

Find the angle between the line r=i^+2j^-k^+λi^-j^+k^ and plane r·2i^-j^+k^=4

MEDIUM
IMPORTANT

 Find the angle between the line x-23=y+1-1=z-22 and plane 3x+4y+z+5=0.

MEDIUM
IMPORTANT

Find the angle between the line x+13=y-12=z-24 and plane 2x+y-3z+4=0