Integral as Limit of Sum

IMPORTANT

Integral as Limit of Sum: Overview

This Topic covers sub-topics such as Definite Integral as the Limit of a Sum

Important Questions on Integral as Limit of Sum

HARD
IMPORTANT

The value of limnr=1r=4nnr3r+4n2 is equal to

HARD
IMPORTANT

The value of limn1n+1+1n+2+...+16n is

HARD
IMPORTANT

limn1n+1+1n+2+...+16n  is equal to

MEDIUM
IMPORTANT

Among

S1:limn1n2(2+4+6++2n)=1

S2:limn1n16115+215+315++n15=116

MEDIUM
IMPORTANT

Consider:

Statement 1: limn1n21+2+3+...+n=1

Statement 2:limn1n16115+215+315+...+n15=116

MEDIUM
IMPORTANT

limn11+n+12+n+13+n++12n  is equal to :-

EASY
IMPORTANT

limn3n4+2+1n2+2+2n2++3-1n2 is equal to

HARD
IMPORTANT

limnn3+1n3+2.....nn32n33n is

MEDIUM
IMPORTANT

limn12n11-12n+11-22n+11-32n+...+11-2n-12n is equal to

HARD
IMPORTANT

Select the incorrect step while calculating definite integral 13x2+e-xdx as limit of sums.

I:f(x)=x2+e-x, a=1, b=3, h=2n

II:13x2+e-xdx=2limn1nf(1)+f1+2n+f1+4n+...+f1+2n-1n

III:13x2+e-xdx=2limn1n1+e-1+1+2n2+e-1+2n+1+4n2+e-1+4n+...+1+2n-1n2+e-1+2n-1n

IV: 13x2+e-xdx=2limn1n1+1+2n2+1+4n2+...+1+2n-1n2+e-1+e-1+2n+e-1+4n+...+e-1+2n-1n

V: 13x2+e-xdx=2limn1n1-1+2nn1-1+2n+e-11-e-1+2nn1-e-1+2n

HARD
IMPORTANT

Evaluate 23x2 dx as the limit of a sum

HARD
IMPORTANT

limn11+n5+2425+n5+3435+n5++n4n5+n5=

HARD
IMPORTANT

For positive integer n, define fn=n+16+5n-3n24n+3n2+32+n-3n28n+3n2+48-3n-3n212n+3n2++25n-7n27n2. Then, the value of limnfn is equal to

HARD
IMPORTANT

Let fx=limn+nnx+nx+n2x+nnn!x2+n2x2+n24x2+n2n2xn for all x>0. Then

HARD
IMPORTANT

limnn2n2+1n+1+n2n2+4n+2+n2n2+9n+3+...+n2n2+n2n+n is equal to

HARD
IMPORTANT

limn12n11-12n+11-22n+11-32n+.+11-2n-12n is equal to

MEDIUM
IMPORTANT

If a=limnk=1n2nn2+k2 and fx=1-cosx1+cosx,x0,1, then:

HARD
IMPORTANT

limnn2n2+1n+1+n2n2+4n+2+n2n2+9n+3++n2n2+n2n+n is equal to

HARD
IMPORTANT

The value of limn12+11-n3+22+22-n3+32+33-n3............+n2+nn-n3 is equal to