Integral as Limit of Sum

IMPORTANT

Integral as Limit of Sum: Overview

In this topic, we will understand the definite integral as the limit of sum. It illustrates its meaning with the help of proof and diagram. We will also discuss the concept of lower limit and upper limit.

Important Questions on Integral as Limit of Sum

HARD
IMPORTANT

The value of limnr=1r=4nnr3r+4n2 is equal to

HARD
IMPORTANT

The value of abfxdx=balimn1n[fa+fa+h+...+fa+n1h], where h=banf(x)=x2+x+2; a=0, b=2 as limits of sum would be

HARD
IMPORTANT

The value of limn1n+1+1n+2+...+16n is

HARD
IMPORTANT

limn1n+1+1n+2+...+16n  is equal to

MEDIUM
IMPORTANT

Among

S1:limn1n2(2+4+6++2n)=1

S2:limn1n16115+215+315++n15=116

MEDIUM
IMPORTANT

Consider:

Statement 1: limn1n21+2+3+...+n=1

Statement 2:limn1n16115+215+315+...+n15=116

HARD
IMPORTANT

limnn3+1n3+2.....nn32n33n is

MEDIUM
IMPORTANT

limn12n11-12n+11-22n+11-32n+...+11-2n-12n is equal to

HARD
IMPORTANT

Select the incorrect step while calculating definite integral 13x2+e-xdx as limit of sums.

I:f(x)=x2+e-x, a=1, b=3, h=2n

II:13x2+e-xdx=2limn1nf(1)+f1+2n+f1+4n+...+f1+2n-1n

III:13x2+e-xdx=2limn1n1+e-1+1+2n2+e-1+2n+1+4n2+e-1+4n+...+1+2n-1n2+e-1+2n-1n

IV: 13x2+e-xdx=2limn1n1+1+2n2+1+4n2+...+1+2n-1n2+e-1+e-1+2n+e-1+4n+...+e-1+2n-1n

V: 13x2+e-xdx=2limn1n1-1+2nn1-1+2n+e-11-e-1+2nn1-e-1+2n

HARD
IMPORTANT

Evaluate 23x2 dx as the limit of a sum

HARD
IMPORTANT

limn11+n5+2425+n5+3435+n5++n4n5+n5=

HARD
IMPORTANT

For positive integer n, define fn=n+16+5n-3n24n+3n2+32+n-3n28n+3n2+48-3n-3n212n+3n2++25n-7n27n2. Then, the value of limnfn is equal to

HARD
IMPORTANT

Let fx=limn+nnx+nx+n2x+nnn!x2+n2x2+n24x2+n2n2xn for all x>0. Then

HARD
IMPORTANT

limnn2n2+1n+1+n2n2+4n+2+n2n2+9n+3+...+n2n2+n2n+n is equal to

HARD
IMPORTANT

The value of limn12+11-n3+22+22-n3+32+33-n3............+n2+nn-n3 is equal to 

HARD
IMPORTANT

The value of limn1nnλ(n+1)λ(n+2)λ(n+n)λ1n is equal to

MEDIUM
IMPORTANT

For α>-1 and β>-1, the value of limnnβ-α1α+2α++nα1β+2β++nβ is

MEDIUM
IMPORTANT

Suppose f is a differentiable function on [0,1], such that the derivative of f is continuous on [0,1]. Let f(1)=6 and f(0)=1 Then limn1nk=1nfknf'kn is

EASY
IMPORTANT

The limit limn1n2020k=1nk2019